In: Economics
3. Here are quarterly data for the past two years. From these data, prepare a forecast for the upcoming year using linear regression. | |||||||||||||
Period | Actual | ||||||||||||
1.00 | 300.00 | ||||||||||||
2.00 | 540.00 | ||||||||||||
3.00 | 885.00 | ||||||||||||
4.00 | 580.00 | ||||||||||||
5.00 | 416.00 | ||||||||||||
6.00 | 760.00 | ||||||||||||
7.00 | 1191.00 | ||||||||||||
8.00 | 760.00 | ||||||||||||
What are the forecasts for periods 9, 10, 11, and 12? | |||||||||||||
By running regression of the form Y = a+bX
Where Y is actual and X is period, we get results of the form,
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.61 | |||||
R Square | 0.37 | |||||
Adjusted R Square | 0.27 | |||||
Standard Error | 241.49 | |||||
Observations | 8 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 2,09,738.67 | 2,09,738.67 | 3.60 | 0.11 | |
Residual | 6 | 3,49,895.33 | 58,315.89 | |||
Total | 7 | 5,59,634.00 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 361.00 | 188.17 | 1.92 | 0.10 | -99.42 | 821.42 |
Period | 70.67 | 37.26 | 1.90 | 0.11 | -20.51 | 161.84 |
Period | Actual |
1 | 300 |
2 | 540 |
3 | 885 |
4 | 580 |
5 | 416 |
6 | 760 |
7 | 1191 |
8 | 760 |
9 | 997 |
10 | 1068 |
11 | 1138 |
Forecasts,
Period 9 = 361+70.67*9 = 997.03
Period 10 = 361+70.67*10 = 1067.7
Period 11 = 361+70.67*11 = 1138..37