In: Economics
| 3. Here are quarterly data for the past two years. From these data, prepare a forecast for the upcoming year using linear regression. | |||||||||||||
| Period | Actual | ||||||||||||
| 1.00 | 300.00 | ||||||||||||
| 2.00 | 540.00 | ||||||||||||
| 3.00 | 885.00 | ||||||||||||
| 4.00 | 580.00 | ||||||||||||
| 5.00 | 416.00 | ||||||||||||
| 6.00 | 760.00 | ||||||||||||
| 7.00 | 1191.00 | ||||||||||||
| 8.00 | 760.00 | ||||||||||||
| What are the forecasts for periods 9, 10, 11, and 12? | |||||||||||||
By running regression of the form Y = a+bX
Where Y is actual and X is period, we get results of the form,
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.61 | |||||
| R Square | 0.37 | |||||
| Adjusted R Square | 0.27 | |||||
| Standard Error | 241.49 | |||||
| Observations | 8 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 2,09,738.67 | 2,09,738.67 | 3.60 | 0.11 | |
| Residual | 6 | 3,49,895.33 | 58,315.89 | |||
| Total | 7 | 5,59,634.00 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 361.00 | 188.17 | 1.92 | 0.10 | -99.42 | 821.42 | 
| Period | 70.67 | 37.26 | 1.90 | 0.11 | -20.51 | 161.84 | 
| Period | Actual | 
| 1 | 300 | 
| 2 | 540 | 
| 3 | 885 | 
| 4 | 580 | 
| 5 | 416 | 
| 6 | 760 | 
| 7 | 1191 | 
| 8 | 760 | 
| 9 | 997 | 
| 10 | 1068 | 
| 11 | 1138 | 
Forecasts,
Period 9 = 361+70.67*9 = 997.03
Period 10 = 361+70.67*10 = 1067.7
Period 11 = 361+70.67*11 = 1138..37