Question

In: Math

please be very specific on showing work done!! If Z∼N(μ=0,σ2=1)Z∼N(μ=0,σ2=1), find the following probabilities: P(Z<1.58)=P(Z<1.58)= P(Z=1.58)=P(Z=1.58)=...

please be very specific on showing work done!!

If Z∼N(μ=0,σ2=1)Z∼N(μ=0,σ2=1), find the following probabilities:

  1. P(Z<1.58)=P(Z<1.58)=
  2. P(Z=1.58)=P(Z=1.58)=
  3. P(Z>−.27)=P(Z>−.27)=
  4. P(−1.97<Z<2.46)=

Solutions

Expert Solution

Z~N(0,1)

P(Z<1.58)=0.9429

P(Z=1.58)=0 as for continuous distribution exact probability is equal to zero

P(Z>-0.27)=1-P(Z<-0.27)=1-0.3936=0.6064

P(-1.97 <Z<2.46)=P(Z<2.46)-P(Z<-1.97)=0.9930-0.0244=0.9686

PFA normal table for reference


Related Solutions

Find the probability of each of the following, if Z~N(μ = 0,σ = 1). a) P(Z...
Find the probability of each of the following, if Z~N(μ = 0,σ = 1). a) P(Z < -1.88) b) P(Z > 1.51) = c) P(-0.61 < Z < 1.54) = d) P(| Z | >1.78) = e)  P(Z < -1.27) = f) P(Z > 1.02) = g) P(-0.69 < Z < 1.78) = h) P(| Z | >1.86) =
1.- Find the following probabilities. (a) P(Z > 1.4)    (b) P(−1 < Z < 1)...
1.- Find the following probabilities. (a) P(Z > 1.4)    (b) P(−1 < Z < 1) (c) P(Z < −1.49) 2.- Find (a) Z0.03 (b) Z0.07 3.- The distance that a Tesla model 3 can travel is normally distributed with a mean of 260 miles and a standard deviation of 25 miles. (a) What is the probability that a randomly selected Tesla model 3 can travel more than 310 miles? (b) What is the probability that a randomly selected Tesla...
find the probabilities for each using the standard normal distribution. p(0<z<0.95), p(0<z<1.96), p(-1.38<z<0), p(z>2.33), p(z<-1.51), p(1.56<z<2.13),...
find the probabilities for each using the standard normal distribution. p(0<z<0.95), p(0<z<1.96), p(-1.38<z<0), p(z>2.33), p(z<-1.51), p(1.56<z<2.13), p(z<1.42)
#65 Suppose Z ~ N(0, 1), and P(Z < z) = 0.9750. Find z. Enter your...
#65 Suppose Z ~ N(0, 1), and P(Z < z) = 0.9750. Find z. Enter your exact value from Table A4. If you use Excel instead, enter your value rounded to 2 decimal places #89 Suppose X ~ N(10, 2), and P(X < x) = 0.5. Find x. Enter your exact numerical value. #90 Suppose X ~ N(11, 4). Find P(X > 3). Round your answer to 4 decimal places. #60 Suppose X ~ N(100, 2). Find P(X < 98)....
Find the following probabilities. (Round your answers to four decimal places.) (a)    p(0 < z < 1.44)...
Find the following probabilities. (Round your answers to four decimal places.) (a)    p(0 < z < 1.44) (b)    p(1.03 < z < 1.69) (c)    p(−0.87 < z < 1.72) (d)    p(z < −2.07) (e)    p(−2.32 < z < −1.17) (f)    p(z < 1.52)
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P...
Find the following probabilities for the standard normal random variable z z : a) P(−2.07≤z≤1.93)= P ( − 2.07 ≤ z ≤ 1.93 ) = (b) P(−0.46≤z≤1.73)= P ( − 0.46 ≤ z ≤ 1.73 ) = (c) P(z≤1.44)= P ( z ≤ 1.44 ) = (d) P(z>−1.57)= P ( z > − 1.57 ) =
Find the following probabilities for two normal random variablesZ=N(0,1) andX=N(−1,9). (a)P(Z >−1.48). (b)P(|X|<2.30). (c) What is...
Find the following probabilities for two normal random variablesZ=N(0,1) andX=N(−1,9). (a)P(Z >−1.48). (b)P(|X|<2.30). (c) What is the type and the parameters of the random variableY= 3X+ 5?
Find the following probabilities for the standard normal random variable z: (a) P(−0.76<z<0.75)= (b) P(−0.98<z<1.36)= (c)...
Find the following probabilities for the standard normal random variable z: (a) P(−0.76<z<0.75)= (b) P(−0.98<z<1.36)= (c) P(z<1.94)= (d) P(z>−1.2)= 2. Suppose the scores of students on an exam are Normally distributed with a mean of 480 and a standard deviation of 59. Then approximately 99.7% of the exam scores lie between the numbers ---- and -----. ?? Hint: You do not need to use table E for this problem.
Given the number of trials, n, and the probability of success, p, find the following probabilities....
Given the number of trials, n, and the probability of success, p, find the following probabilities. a. N = 12, p = 0.06 P(3 successes) b. N = 18, p = 0.96 P(2 failures) c. N = 5, p = 0.28 P(at least 3 successes) d. N = 90, p = 0.04 P(no more than 4 successes)
For X ~ BIN(20, 0.6), find the following probabilities (PLEASE SHOW CLEAR WORK): P(X = 14)...
For X ~ BIN(20, 0.6), find the following probabilities (PLEASE SHOW CLEAR WORK): P(X = 14) = P(X > 15) = P(X < 9) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT