In: Statistics and Probability
Find the probability of each of the following, if Z~N(μ = 0,σ = 1).
a) P(Z < -1.88)
b) P(Z > 1.51) =
c) P(-0.61 < Z < 1.54) =
d) P(| Z | >1.78) =
e) P(Z < -1.27) =
f) P(Z > 1.02) =
g) P(-0.69 < Z < 1.78) =
h) P(| Z | >1.86) =
a)
P( X < -1.88 ) = P( (X-µ)/σ ≤ (-1.88-0)
/1)
=P(Z < -1.88 ) =
0.0301 (answer)
b)
P ( X > 1.51 ) = P( (X-µ)/σ ≥ (1.51-0) /
1)
= P(Z > 1.51 ) = P( Z <
-1.510 ) = 0.0655 (answer)
c)
we need to calculate probability for ,
P ( -0.61 < X <
1.54 )
=P( (-0.61-0)/1 < (X-µ)/σ < (1.54-0)/1 )
P ( -0.610 < Z <
1.540 )
= P ( Z < 1.540 ) - P ( Z
< -0.61 ) =
0.9382 - 0.2709 =
0.6673 (answer)
d)
P ( X > 1.78 ) = P( (X-µ)/σ ≥ (1.78-0) /
1)
= P(Z > 1.78 ) = P( Z <
-1.780 ) = 0.03754
P(| Z | >1.78) = 2 * P(Z>1.78) = 2*0.03754 =
0.0751
e)
P(Z< -1.27) = P( (X-µ)/σ ≤ (-1.27-0) /1)
=P(Z ≤ -1.27 ) =
0.1020 (answer)
f)
P ( X > 1.02 ) = P( (X-µ)/σ ≥ (1.02-0) /
1)
= P(Z > 1.02 ) = P( Z <
-1.020 ) = 0.15386
(answer)
g)
we need to calculate probability for ,
P ( -0.69 < X <
1.78 )
=P( (-0.69-0)/1 < (X-µ)/σ < (1.78-0)/1 )
P ( -0.690 < Z <
1.780 )
= P ( Z < 1.780 ) - P ( Z
< -0.69 ) =
0.9625 - 0.2451 =
0.7174 (answer)
h)
P ( X > 1.86 ) = P( (X-µ)/σ ≥ (1.86-0) /
1)
= P(Z > 1.86 ) = P( Z <
-1.860 ) = 0.03144
P(| Z | >1.86) =2*P(Z>1.86) = 2*0.03144 =
0.0629
please revert for doubt..