Question

In: Chemistry

A cylinder fitted with a piston has an initial volume of 0.1 m3 and contains nitrogen...

A cylinder fitted with a piston has an initial volume of 0.1 m3 and contains nitrogen at 150 kPa, 25 0C. The piston is moved, compressing the nitrogen until the pressure is 1 MPa and the temperature is 150 0C. During this compression process heat is transferred from the nitrogen, and the work done on the nitrogen is 20 kJ. Determine the amount of this heat transfer.

Solutions

Expert Solution

A cylinder fitted with a piston has an initial volume of 0.1 m3 and contains nitrogen at 150 kPa, 25 0C. The piston is moved, compressing the nitrogen until the pressure is 1 MPa and the temperature is 150 0C. During this compression process heat is transferred from the nitrogen, and the work done on the nitrogen is 20 kJ. Determine the amount of this heat transfer.

Solution :-

Lets first calculate the mass of the nitrogen gas present using the ideal gas law formula

PV= mRT

R= 0.2968 kJ per kg K

T= 25 +273 = 298 K

V= 0.1 m3

P=150 kpa

m= (150 kpa * 0.1 m3 ) / (0.2968 kJ per kg K * 298 K)

m=0.1696 kg N2

now lets calculate the Delta E using the Cv of the N2 gas

Cv= 0.745 kJ per kg K

Delta E = Cv * delta T

T1 = 298 K

T2 = 150 C +273 = 423 K

Delta T= 423 – 298 = 125 K

Delta E = 0.745 kJ per kg K * 125 K

Delta E= 93.125 kJ

Delta E * m = Q-W

We have to find Q

Therefore Q = m*Delta E – w

                      = (0.1696 kg * 93.125 kJ per kg )- 20 kJ

                      = -4.206 kJ

Therefore amount of heat transferred = -4.206 kJ


Related Solutions

A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3....
A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3. The propane undergoes a process to a final pressure of 4 bar, during which the pressure–volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored.
A piston-cylinder device initially contains 0.3 m3 of nitrogen gas at 350 kPa and 35 ℃.
A piston-cylinder device initially contains 0.3 m3 of nitrogen gas at 350 kPa and 35 ℃. An electric heater within the device is turned on and is allowed to pass a 240W for 6 minutes. Nitrogen expands at constant pressure, and a heat loss of 3000 J occurs during the process. Determine the final temperature of the nitrogen. (Average CP for Nitrogen is 1.039 kJ/kgK and molecular weight of Nitrogen is 28.01 kg/kmol.)  
An insulated tank, fitted with a freely moving frictionless piston, has an initial volume of 1...
An insulated tank, fitted with a freely moving frictionless piston, has an initial volume of 1 m3 and contains 20 kg of refrigerant 134a at 200 kPa. A stirrer with a rotation rate of 300 rpm and a torque of 15 J/rotation is included in the tank. Find the time required for the refrigerant to evaporate completely. Ans= [73.36 minutes]
Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar.
  Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar. It is desired to reverse the cycle and use it as a refrigerator. In this case the process would begin with PV1.36 = constant process from an initial state of 293 K and a pressure of 10 Bars. The gas is allowed to expand to a volume 3.5 times the volume of state 1. It then follows a...
(THERMODYNAMICS) A vertical cylinder fitted with a frictionless piston contains 1.5 kg of H2O initially at...
(THERMODYNAMICS) A vertical cylinder fitted with a frictionless piston contains 1.5 kg of H2O initially at 100 °C, 400 kPa.  If the volume of the system reaches 0.5 m3, the piston hits a set of stops and is restrained from further upward travel. The system is heated to 200 C. (Use saturated water tables, steam tables, and superheated tables as necessary) a)   If the piston reaches the stops, determine the temperature and pressure when the piston first touches but exerts no force...
A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 oC. Mass...
A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 oC. Mass of the air is 1 kg. Weights are put on the piston until the air reaches to 0.1 m3 and 1,000 oC, in which the air undergoes a polytropic process (PVn = const). Assume that heat loss from the cylinder, friction of piston, kinetic and potential effects are negligible. 1) Determine the polytropic constant n. 2) Determine the work transfer in kJ for this...
The volume of 1 kg of helium in a piston-cylinder device is initially 7 m3 ....
The volume of 1 kg of helium in a piston-cylinder device is initially 7 m3 . Now helium is compressed to 3 m3 while its pressure is maintained constant at 150 kPa. Determine the initial and final temperatures of helium as well as the work required to compress it, in kJ. You may assume deal gas behavior.
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g...
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g of ice at -10 C. Heat is supplied to the contents at a constant rate by a 100 W heater. Make a graph showing temperature of the cylinder contents as a function of time starting at t = 0, when the temperature is -10 C and ending when the temperature is 110 C. Let c = 2.0 kJ/kg K for specific heat of ice...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute and 150 oC. It is then heated so it expands at constant pressure until it reaches a temperature of 400 oC. Draw a diagram of the device showing system boundary and flows of energy. What boundary work is done by the cylinder, in kJ, during the expansion? State your assumptions. 1. What is the mass of steam in the piston-cylinder? 2. How much heat...
A piston-cylinder has a volume of 1 ft3 and contains a substance initially at 50 °F...
A piston-cylinder has a volume of 1 ft3 and contains a substance initially at 50 °F and 1 atm. The system is then heated until the temperature becomes 300 °F. Determine the total heat added (Btu) and final volume (ft3) assuming the substance is: a) water, b) copper, c) neon, d) air.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT