Question

In: Physics

Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar.

 

Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar. It is desired to reverse the cycle and use it as a refrigerator. In this case the process would begin with PV1.36 = constant process from an initial state of 293 K and a pressure of 10 Bars. The gas is allowed to expand to a volume 3.5 times the volume of state 1. It then follows a constant volume process in which the temperature is raised to 323 K. A constant temperature is followed back to volume 1.   A constant volume process then returns it to the initial state.

a) Calculate the work input for this cycle, the heat input to the cycle that could be used to cool a space at 293 K and its coefficient of performance.

b) How much total heat is removed from the system during the cycle?

c) How much total heat input is added to the system and what fraction could be used for cooling a space that is maintained at 277K?

Solutions

Expert Solution


Related Solutions

A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3....
A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3. The propane undergoes a process to a final pressure of 4 bar, during which the pressure–volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored.
The volume of 1 kg of helium in a piston-cylinder device is initially 7 m3 ....
The volume of 1 kg of helium in a piston-cylinder device is initially 7 m3 . Now helium is compressed to 3 m3 while its pressure is maintained constant at 150 kPa. Determine the initial and final temperatures of helium as well as the work required to compress it, in kJ. You may assume deal gas behavior.
A piston–cylinder device initially contains 2 kg water in 1 m3 at 500 kPa. The system...
A piston–cylinder device initially contains 2 kg water in 1 m3 at 500 kPa. The system then cools down and the volume drops to half and pressure of 300 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 500 kPa is required to move it. (a) Show the process on a P-v, T-v and P-T diagrams with respect to saturation lines and determine, (b)...
A piston-cylinder device initially contains 0.3 m3 of nitrogen gas at 350 kPa and 35 ℃.
A piston-cylinder device initially contains 0.3 m3 of nitrogen gas at 350 kPa and 35 ℃. An electric heater within the device is turned on and is allowed to pass a 240W for 6 minutes. Nitrogen expands at constant pressure, and a heat loss of 3000 J occurs during the process. Determine the final temperature of the nitrogen. (Average CP for Nitrogen is 1.039 kJ/kgK and molecular weight of Nitrogen is 28.01 kg/kmol.)  
A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 oC. Mass...
A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 oC. Mass of the air is 1 kg. Weights are put on the piston until the air reaches to 0.1 m3 and 1,000 oC, in which the air undergoes a polytropic process (PVn = const). Assume that heat loss from the cylinder, friction of piston, kinetic and potential effects are negligible. 1) Determine the polytropic constant n. 2) Determine the work transfer in kJ for this...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute and 150 oC. It is then heated so it expands at constant pressure until it reaches a temperature of 400 oC. Draw a diagram of the device showing system boundary and flows of energy. What boundary work is done by the cylinder, in kJ, during the expansion? State your assumptions. 1. What is the mass of steam in the piston-cylinder? 2. How much heat...
. Air in a 0.3 m3 cylinder is initially at a pressure of 10 bar and...
. Air in a 0.3 m3 cylinder is initially at a pressure of 10 bar and a temperature of 330 K. The cylinder is to be emptied by opening a valve and letting the pressure drop to that of the atmosphere. What will be the final temperature and mass of gas in the cylinder if this is accomplished: a) In a manner that maintains the temperature of the gas at 330 K? b) In a well-insulated cylinder (Answer: Tfinal =...
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg...
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg of air at 300 kPa and 27ºC. The mass of the piston is such that a pressure of 600 kPa is required to move it upward. Heat is now transferred to the air until its volume doubles. a) Determine the work done by the air and b) the total heat transferred to the air during this process. c) Also, sketch the process on a...
Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 8 bar,...
Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 8 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kJ per kg of air, for an adiabatic compression from the given initial state to a final pressure of 8 bar? Note...
Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 4 bar,...
Air is compressed adiabatically in a piston–cylinder assembly from 1 bar, 300 K to 4 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kJ per kg of air, for an adiabatic compression from the given initial state to a final pressure of 4 bar? Note...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT