Question

In: Other

An insulated tank, fitted with a freely moving frictionless piston, has an initial volume of 1...

An insulated tank, fitted with a freely moving frictionless piston, has an initial volume of 1 m3 and contains 20 kg of refrigerant 134a at 200 kPa. A stirrer with a rotation rate of 300 rpm and a torque of 15 J/rotation is included in the tank. Find the time required for the refrigerant to evaporate completely.

Ans= [73.36 minutes]

Solutions

Expert Solution


Related Solutions

A cylinder fitted with a piston has an initial volume of 0.1 m3 and contains nitrogen...
A cylinder fitted with a piston has an initial volume of 0.1 m3 and contains nitrogen at 150 kPa, 25 0C. The piston is moved, compressing the nitrogen until the pressure is 1 MPa and the temperature is 150 0C. During this compression process heat is transferred from the nitrogen, and the work done on the nitrogen is 20 kJ. Determine the amount of this heat transfer.
A volume of 8.62 m3 of air in a rigid, insulated container fitted with a paddle...
A volume of 8.62 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 322 K, 0.4 bar. The air receives 481 kJ by work from the paddle wheel. Assuming the ideal gas model with cv = 0.71 kJ/kg • K, determine for the air the amount of entropy produced, in kJ/K.
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g...
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g of ice at -10 C. Heat is supplied to the contents at a constant rate by a 100 W heater. Make a graph showing temperature of the cylinder contents as a function of time starting at t = 0, when the temperature is -10 C and ending when the temperature is 110 C. Let c = 2.0 kJ/kg K for specific heat of ice...
(THERMODYNAMICS) A vertical cylinder fitted with a frictionless piston contains 1.5 kg of H2O initially at...
(THERMODYNAMICS) A vertical cylinder fitted with a frictionless piston contains 1.5 kg of H2O initially at 100 °C, 400 kPa.  If the volume of the system reaches 0.5 m3, the piston hits a set of stops and is restrained from further upward travel. The system is heated to 200 C. (Use saturated water tables, steam tables, and superheated tables as necessary) a)   If the piston reaches the stops, determine the temperature and pressure when the piston first touches but exerts no force...
An insulated cylinder is initially divided into halves by a frictionless, thermally conducting piston. On one...
An insulated cylinder is initially divided into halves by a frictionless, thermally conducting piston. On one side of the piston is 1 m3 of a gas at 300 K, 2 bar. On the other side is 1 m3 of the same gas at 300 K, 1 bar.The piston is released and equilibrium is attained, with the piston experiencing no change of state. Employing the ideal gas model for the gas, determine (a) the final temperature, in K. (b) the final...
An insulated cylinder is initially divided into halves by a frictionless, thermally conducting piston. On one...
An insulated cylinder is initially divided into halves by a frictionless, thermally conducting piston. On one side of the piston is 1 m3 of a gas at 300 K, 2 bar. On the other side is 1 m3 of the same gas at 300 K, 1 bar.The piston is released and equilibrium is attained, with the piston experiencing no change of state. Employing the ideal gas model for the gas, determine (a) the final temperature, in K. (b) the final...
An insulated, rigid tank whose volume is 0.5 m3 is connected by a valve to a...
An insulated, rigid tank whose volume is 0.5 m3 is connected by a valve to a large vessel holding steam at 40 bar, 480°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 20 bar. Determine: (a) the final temperature of the steam in the tank, in °C, the final mass of the steam in the tank, in kg, and (b) the amount of entropy...
A piston encloses 1 lbm of water in an initial volume of 0.3 ft^3. The initial...
A piston encloses 1 lbm of water in an initial volume of 0.3 ft^3. The initial temperature is 120F. The piston leaves the stops at a pressure of 150 psia. The water is heated from it's initial state to a final temperature of 400F. a) Draw the process on a P-v diagram with respect to saturation lines. b) Evaluate the work done by the H2O. c) Determine the volume occupied by the liquid at the initial state and when the...
An insulated rigid tank having a 0.2 m3 volume initially contains air at 400 kPa and...
An insulated rigid tank having a 0.2 m3 volume initially contains air at 400 kPa and 313 K. The amount of paddle-wheel work done on the system is 200 kJ. Calculate the nearest value of entropy change a. 0.66 kJ/K b. 0.88 kJ/K c. None d. 0.44 kJ/K e. 0.33 kJ/K
A piston cylinder device containing 0.5 kg of water has initial volume of 0.5L. The device...
A piston cylinder device containing 0.5 kg of water has initial volume of 0.5L. The device starts and goes through a Carnot cycle and generates 500.3 kJ work. If the maximum temperature that water will reach is 1.5 times the minimum temperature of water and during heat rejection process, water goes from saturated vapor to saturated liquid phase Find: 1. QH & QL for this cycle (10 points). 2. TH & TL for this cycle (10 points). 3. Maximum and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT