Question

In: Mechanical Engineering

A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3....

A piston–cylinder assembly contains propane, initially at 27°C, 1 bar, and a volume of 0.1 m3. The propane undergoes a process to a final pressure of 4 bar, during which the pressure–volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored.

Solutions

Expert Solution

Hey, in case of any doubt feel free to drop me a comment.


Related Solutions

Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar.
  Consider a piston cylinder device with a volume of 0.04 m3 and initially contains air at 293 K and 1 bar. It is desired to reverse the cycle and use it as a refrigerator. In this case the process would begin with PV1.36 = constant process from an initial state of 293 K and a pressure of 10 Bars. The gas is allowed to expand to a volume 3.5 times the volume of state 1. It then follows a...
A cylinder fitted with a piston has an initial volume of 0.1 m3 and contains nitrogen...
A cylinder fitted with a piston has an initial volume of 0.1 m3 and contains nitrogen at 150 kPa, 25 0C. The piston is moved, compressing the nitrogen until the pressure is 1 MPa and the temperature is 150 0C. During this compression process heat is transferred from the nitrogen, and the work done on the nitrogen is 20 kJ. Determine the amount of this heat transfer.
A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 oC. Mass...
A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 oC. Mass of the air is 1 kg. Weights are put on the piston until the air reaches to 0.1 m3 and 1,000 oC, in which the air undergoes a polytropic process (PVn = const). Assume that heat loss from the cylinder, friction of piston, kinetic and potential effects are negligible. 1) Determine the polytropic constant n. 2) Determine the work transfer in kJ for this...
Propane vapor initially at 7.0 bar and 50C (State 1) is contained within a piston-cylinder device....
Propane vapor initially at 7.0 bar and 50C (State 1) is contained within a piston-cylinder device. The refrigerant is cooled at constant volume until its temperature reaches -10C (State 2) and is then compressed isothermally to a pressure of 6.0 bar (State 3). (a) Locate the state points on appropriately labeled p-v diagram. (b) Determine the specific volume (in m3 /kg), internal energy (in kJ/kg) and enthalpy (in kJ/kg) at each state point.
The volume of 1 kg of helium in a piston-cylinder device is initially 7 m3 ....
The volume of 1 kg of helium in a piston-cylinder device is initially 7 m3 . Now helium is compressed to 3 m3 while its pressure is maintained constant at 150 kPa. Determine the initial and final temperatures of helium as well as the work required to compress it, in kJ. You may assume deal gas behavior.
One kg of water in a piston-cylinder assembly, initially at 1.5 bar and 200 C, cools...
One kg of water in a piston-cylinder assembly, initially at 1.5 bar and 200 C, cools at constant pressure with no internal irreversibilities to a final state where the water is a saturated liquid. For the water as the system, determine the work, the heat transfer, and the amounts of exergy transfer accompanying work and heat transfer, each in kJ. Let T0 = 20 °C, p0=1 bar and ignore the effects of motion and gravity. THERE ARE SOME DIFFERENT ANSWERS...
Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 500°C....
Five kg of water is contained in a piston–cylinder assembly, initially at 5 bar and 500°C. The water is slowly heated at constant pressure to a final state. The heat transfer for the process is 2660 kJ and kinetic and potential energy effects are negligible. Determine the final volume, in m3, and the work for the process, in kJ. There is no final temperature information given.
Two kg of water is contained in a piston–cylinder assembly, initially at 10 bar and 200°C....
Two kg of water is contained in a piston–cylinder assembly, initially at 10 bar and 200°C. The water is slowly heated at constant pressure to a final state. If the heat transfer for the process is 1740 kJ, determine the temperature at the final state, in °C, and the work, in kJ. Kinetic and potential energy effects are negligible. (Moran, 01/2018, p. P-23) Moran, M. J., Shapiro, H. N., Boettner, D. D., Bailey, M. B. (01/2018). Fundamentals of Engineering Thermodynamics,...
A piston-cylinder apparatus contains initially 1.2 mol of ideal gas at 6 bar and 25°C. Then...
A piston-cylinder apparatus contains initially 1.2 mol of ideal gas at 6 bar and 25°C. Then the piston is moved downward to increase the pressure to 12 bar pressure. You can ignore the change in potential energy associated with the piston moving. a. Write the First Law of Thermodynamics and simplify for this problem given that temperature of the system changes. b. Assuming Isothermal operation what are the initial and final volumes of gas for the above process (L)? c....
A piston-cylinder has a volume of 1 ft3 and contains a substance initially at 50 °F...
A piston-cylinder has a volume of 1 ft3 and contains a substance initially at 50 °F and 1 atm. The system is then heated until the temperature becomes 300 °F. Determine the total heat added (Btu) and final volume (ft3) assuming the substance is: a) water, b) copper, c) neon, d) air.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT