Question

In: Advanced Math

Suppose f : [a, b] −→ R is continuous on [a, b] and that f attains...

Suppose f : [a, b] −→ R is continuous on [a, b] and that f attains its minimum value at ξ ∈ (a, b). If f ' (ξ) exists, prove that f ' (ξ) = 0.

Solutions

Expert Solution


Related Solutions

a) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b)...
a) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b) and f ' < -1 on (a, b). Prove that f is strictly decreasing on [a, b]. b) Suppose f:[a, b] → R is continuous on [a, b] and differentiable on (a, b) and f ' ≠ -1 on (a, b).   Why must it be true that either f ' > -1 on all of (a, b) or f ' < -1 on all...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f rises strictly monotonously ⇒ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f rises strictly monotonously ⇐ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f is constant ⇐⇒ ∀x∈(a,b): f′(x)=0 (TRUE or FALSE?) If f is reversable, f has no critical point. (TRUE or FALSE?) If a is a “minimizer” of f, then f ′(a)...
Suppose a function f : R → R is continuous with f(0) = 1. Show that...
Suppose a function f : R → R is continuous with f(0) = 1. Show that if there is a positive number x0 for which f(x0) = 0, then there is a smallest positive number p for which f(p) = 0. (Hint: Consider the set {x | x > 0, f(x) = 0}.)
Assigned Exercise IX.1. IX.1. (a) Suppose that f : [a, b] → R is continuous. Define...
Assigned Exercise IX.1. IX.1. (a) Suppose that f : [a, b] → R is continuous. Define A := 1/b−a integral of f from a to b, and B := 1/b-a integral of f2 from a to b . Show that 1/b − a integral from a to b of (f(x) − A)2 dx = B − A 2 . Conclude that A2 ≤ B. (b) Assume the Cauchy–Schwarz Inequality for Integrals of Exercise 6.3 #2, which we state here for...
Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
6.3.8. Problem. Let f : A → B be a continuous bijection between subsets of R....
6.3.8. Problem. Let f : A → B be a continuous bijection between subsets of R. (a) Show by example that f need not be a homeomorphism. (b) Show that if A is compact, then f must be a homeomorphism. 6.3.9. Problem. Find in Q a set which is both relatively closed and bounded but which is not compact.
Integral Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information...
Integral Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information to prove thatL(f)≤L(g)andU(f)≤U(g). Information: g : [0, 1] —> R be defined by if x=0, g(x)=1; if x=m/n (m and n are positive integer with no common factor), g(x)=1/n; if x doesn't belong to rational number, g(x)=0 g is discontinuous at every rational number in[0,1]. g is Riemann integrable on [0,1] based on the fact that Suppose h:[a,b]→R is continuous everywhere except at a...
a) Let S ⊂ R, assuming that f : S → R is a continuous function,...
a) Let S ⊂ R, assuming that f : S → R is a continuous function, if the image set {f(x); x ∈ S} is unbounded prove that S is unbounded. b) Let f : [0, 100] → R be a continuous function such that f(0) = f(2), f(98) = f(100) and the function g(x) := f(x+ 1)−f(x) is equal to zero in at most two points of the interval [0, 100]. Prove that (f(50) − f(49))(f(25) − f(24)) >...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f...
Let f be a continuous function on [a, b] which is differentiable on (a,b). Then f is non-decreasing on [a,b] if and only if f′(x) ≥ 0 for all x ∈ (a,b), while if f is non-increasing on [a,b] if and only if f′(x) ≤ 0 for all x ∈ (a, b). can you please prove this theorem? thank you!
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is...
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is continuous on [a, b]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT