Question

In: Advanced Math

differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution

differential equation y'=dy/dx = -(3xey+2y)/ (x2ey+x). find the solution

Solutions

Expert Solution


Related Solutions

Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
Find the general solution of the differential equation (x + 2y) (dx-dy) = dx + dy.
find the differential equation of dy/dx = y+y^3
find the differential equation of dy/dx = y+y^3
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3...
Find The solution of the Differential Equation of (y+4x+2)dx - dy = 0, y(0) = 3 ( Please With Steps)
Find the solution of the following differential equations (x(x-1))dy-(xy+2x3-x2-2y)dx=0
Find the solution of the following differential equations (x(x-1))dy-(xy+2x3-x2-2y)dx=0
Solve this differential equation (4x - 2y)dx + (2x - 9y)dy = 0
Solve this differential equation (4x - 2y)dx + (2x - 9y)dy = 0
Find the series solution of the following equation x(d^2y/dx^2+(1-x)dy/dx+ny=0. where n=0,1,2
Find the series solution of the following equation x(d^2y/dx^2+(1-x)dy/dx+ny=0. where n=0,1,2
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
2. Find the general solution to the differential equation x^2y''+ y'+y = 0 using the Method...
2. Find the general solution to the differential equation x^2y''+ y'+y = 0 using the Method of Frobenius and power series techniques.
Consider the curve given by the equation y^2 - 2x^2y = 3 a) Find dy/dx. b)...
Consider the curve given by the equation y^2 - 2x^2y = 3 a) Find dy/dx. b) Write an equation for the line tangent to the curve at the point (1, -1). c) Find the coordinates of all points on the curve at which the line tangent to the curve at that point is horizontal. d) Evaluate d 2y /dx2 at the point (1, -1).
Given the differential equation dy/dx =x. With intitial condition y(1)=0.5. Use eulers method with dx =...
Given the differential equation dy/dx =x. With intitial condition y(1)=0.5. Use eulers method with dx = 0.1 , to approximate the value of y when x=1.8
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT