In: Math
Q: Calculate the mean, standard deviation, and 95% confidence limits for each set.
A |
B |
C |
D |
E |
F |
3.5 |
70.24 |
.812 |
2.7 |
70.65 |
.514 |
3.1 |
70.22 |
.792 |
3.0 |
70.63 |
.503 |
3.1 |
70.10 |
.794 |
2.6 |
70.64 |
.486 |
3.3 |
.900 |
2.8 |
70.21 |
.497 |
|
2.5 |
3.2 |
.472 |
Q2: A type of steel contains 1.12% nickel and the standard deviation is 0.03%. The following data are collected (in percent)
a) 1.10 b) 1.08 c) 1.09 d) 1.12 e) 1.09
Is there an indication of bias in the method at the 95% level?
1)
for A
sample std dev , s = √(Σ(X- x̅ )²/(n-1) )
= 0.3742
Sample Size , n = 5
Sample Mean, x̅ = ΣX/n = 3.1000
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 4
't value=' tα/2= 2.776 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 0.3742 /
√ 5 = 0.1673
margin of error , E=t*SE = 2.7764
* 0.1673 = 0.4646
confidence interval is
Interval Lower Limit = x̅ - E = 3.10
- 0.464588 = 2.6354
Interval Upper Limit = x̅ + E = 3.10
- 0.464588 = 3.5646
95% confidence interval is (
2.64 < µ < 3.56
)
------------
for B)
sample std dev , s = √(Σ(X- x̅ )²/(n-1) )
= 0.0757
Sample Size , n = 3
Sample Mean, x̅ = ΣX/n =
70.1867
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 2
't value=' tα/2= 4.303 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 0.0757 /
√ 3 = 0.0437
margin of error , E=t*SE = 4.3027
* 0.0437 = 0.1881
confidence interval is
Interval Lower Limit = x̅ - E = 70.19
- 0.188096 = 69.9986
Interval Upper Limit = x̅ + E = 70.19
- 0.188096 = 70.3748
95% confidence interval is (
70.00 < µ < 70.37
)
-------------
for C)
sample std dev , s = √(Σ(X- x̅ )²/(n-1) )
= 0.0511
Sample Size , n = 4
Sample Mean, x̅ = ΣX/n = 0.8245
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 3
't value=' tα/2= 3.182 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 0.0511 /
√ 4 = 0.0256
margin of error , E=t*SE = 3.1824
* 0.0256 = 0.0814
confidence interval is
Interval Lower Limit = x̅ - E = 0.82
- 0.081360 = 0.7431
Interval Upper Limit = x̅ + E = 0.82
- 0.081360 = 0.9059
95% confidence interval is (
0.74 < µ < 0.91
)
--------------
for D)
sample std dev , s = √(Σ(X- x̅ )²/(n-1) )
= 0.2408
Sample Size , n = 5
Sample Mean, x̅ = ΣX/n = 2.8600
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 4
't value=' tα/2= 2.776 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 0.2408 /
√ 5 = 0.1077
margin of error , E=t*SE = 2.7764
* 0.1077 = 0.2990
confidence interval is
Interval Lower Limit = x̅ - E = 2.86
- 0.299032 = 2.5610
Interval Upper Limit = x̅ + E = 2.86
- 0.299032 = 3.1590
95% confidence interval is (
2.56 < µ < 3.16
)
---------
for E)
sample std dev , s = √(Σ(X- x̅ )²/(n-1) )
= 0.2152
Sample Size , n = 4
Sample Mean, x̅ = ΣX/n =
70.5325
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 3
't value=' tα/2= 3.182 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 0.2152 /
√ 4 = 0.1076
margin of error , E=t*SE = 3.1824
* 0.1076 = 0.3424
confidence interval is
Interval Lower Limit = x̅ - E = 70.53
- 0.342360 = 70.1901
Interval Upper Limit = x̅ + E = 70.53
- 0.342360 = 70.8749
95% confidence interval is (
70.19 < µ < 70.87
)
----------
for F)
sample std dev , s = √(Σ(X- x̅ )²/(n-1) )
= 0.0161
Sample Size , n = 5
Sample Mean, x̅ = ΣX/n = 0.4944
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 4
't value=' tα/2= 2.776 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 0.0161 /
√ 5 = 0.0072
margin of error , E=t*SE = 2.7764
* 0.0072 = 0.0200
confidence interval is
Interval Lower Limit = x̅ - E = 0.49
- 0.019994 = 0.4744
Interval Upper Limit = x̅ + E = 0.49
- 0.019994 = 0.5144
95% confidence interval is (
0.47 < µ < 0.51
)