Question

In: Math

Q: Calculate the mean, standard deviation, and 95% confidence limits for each set. A B C...

Q: Calculate the mean, standard deviation, and 95% confidence limits for each set.

A

B

C

D

E

F

3.5

70.24

.812

2.7

70.65

.514

3.1

70.22

.792

3.0

70.63

.503

3.1

70.10

.794

2.6

70.64

.486

3.3

.900

2.8

70.21

.497

2.5

3.2

.472

Q2: A type of steel contains 1.12% nickel and the standard deviation is 0.03%. The following data are collected (in percent)

a) 1.10 b) 1.08 c) 1.09 d) 1.12 e) 1.09

Is there an indication of bias in the method at the 95% level?

Solutions

Expert Solution

1)

for A

sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) ) =   0.3742
Sample Size ,   n =    5
Sample Mean,    x̅ = ΣX/n =    3.1000

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   4          
't value='   tα/2=   2.776   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   0.3742   / √   5   =   0.1673
margin of error , E=t*SE =   2.7764   *   0.1673   =   0.4646
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    3.10   -   0.464588   =   2.6354
Interval Upper Limit = x̅ + E =    3.10   -   0.464588   =   3.5646
95%   confidence interval is (   2.64   < µ <   3.56   )

------------

for B)

sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) ) =   0.0757
Sample Size ,   n =    3
Sample Mean,    x̅ = ΣX/n =    70.1867

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   2          
't value='   tα/2=   4.303   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   0.0757   / √   3   =   0.0437
margin of error , E=t*SE =   4.3027   *   0.0437   =   0.1881
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    70.19   -   0.188096   =   69.9986
Interval Upper Limit = x̅ + E =    70.19   -   0.188096   =   70.3748
95%   confidence interval is (   70.00   < µ <   70.37   )

-------------

for C)

sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) ) =   0.0511
Sample Size ,   n =    4
Sample Mean,    x̅ = ΣX/n =    0.8245

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   3          
't value='   tα/2=   3.182   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   0.0511   / √   4   =   0.0256
margin of error , E=t*SE =   3.1824   *   0.0256   =   0.0814
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    0.82   -   0.081360   =   0.7431
Interval Upper Limit = x̅ + E =    0.82   -   0.081360   =   0.9059
95%   confidence interval is (   0.74   < µ <   0.91   )

--------------

for D)

sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) ) =   0.2408
Sample Size ,   n =    5
Sample Mean,    x̅ = ΣX/n =    2.8600

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   4          
't value='   tα/2=   2.776   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   0.2408   / √   5   =   0.1077
margin of error , E=t*SE =   2.7764   *   0.1077   =   0.2990
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    2.86   -   0.299032   =   2.5610
Interval Upper Limit = x̅ + E =    2.86   -   0.299032   =   3.1590
95%   confidence interval is (   2.56   < µ <   3.16   )

---------

for E)

sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) ) =   0.2152
Sample Size ,   n =    4
Sample Mean,    x̅ = ΣX/n =    70.5325

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   3          
't value='   tα/2=   3.182   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   0.2152   / √   4   =   0.1076
margin of error , E=t*SE =   3.1824   *   0.1076   =   0.3424
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    70.53   -   0.342360   =   70.1901
Interval Upper Limit = x̅ + E =    70.53   -   0.342360   =   70.8749
95%   confidence interval is (   70.19   < µ <   70.87   )

----------

for F)

sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) ) =   0.0161
Sample Size ,   n =    5
Sample Mean,    x̅ = ΣX/n =    0.4944

Level of Significance ,    α =    0.05          
degree of freedom=   DF=n-1=   4          
't value='   tα/2=   2.776   [Excel formula =t.inv(α/2,df) ]      
                  
Standard Error , SE = s/√n =   0.0161   / √   5   =   0.0072
margin of error , E=t*SE =   2.7764   *   0.0072   =   0.0200
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    0.49   -   0.019994   =   0.4744
Interval Upper Limit = x̅ + E =    0.49   -   0.019994   =   0.5144
95%   confidence interval is (   0.47   < µ <   0.51   )


Related Solutions

Calculate the Mean, Median, Standard Deviation, Coefficient of Variation and 95% population mean confidence intervals for...
Calculate the Mean, Median, Standard Deviation, Coefficient of Variation and 95% population mean confidence intervals for property prices of Houses based on the following grouping:  Proximity of the property to CBD Note: Calculate above statistics for both “Up to 5KM” and “Between 5KM and 10KM”  Number of bedrooms Note: Calculate above statistics for “One bedroom”, “Two bedrooms” and “Three bedrooms or more”  Number of bathrooms Note: Calculate above statistics for “One bathroom”, “Two bathrooms”, “Three bathrooms or...
one can calculate the 95% confidence interval for the mean with the population standard deviation knowing...
one can calculate the 95% confidence interval for the mean with the population standard deviation knowing this gives us an upper and lower confidence limit what happens if we decide to calculate the 99% confidence interval describe how the increase in the confidence level has changed the width of the confidence interval
One can calculate the 95% confidence interval for the mean with the population standard deviation known....
One can calculate the 95% confidence interval for the mean with the population standard deviation known. This will give us an upper and a lower confidence limit. What happens if we decide to calculate the 99% confidence interval? Describe how the increase in the confidence level has changed the width of the confidence interval. Do the same for the confidence interval set at 80%. Include an example with actual numerical values for the intervals in your post to help with...
One can calculate the 95% confidence interval for the mean with the population standard deviation known....
One can calculate the 95% confidence interval for the mean with the population standard deviation known. This will give us an upper and a lower confidence limit. What happens if we decide to calculate the 99% confidence interval? Your task for this discussion is as follows: Describe how the increase in the confidence level has changed the width of the confidence interval. Do the same for the confidence interval set at 80%. Include an example with actual numerical values for...
a) the mean is b) the variance is c) the standard deviation is
activities 0 1 2 3    4 5 6 7 probability 0.058 0.121 0.161 0.178 0.217 0.128 0.084 0.053 a) the mean is _______ b) the variance is ____________ c) the standard deviation is_____________  
Find the mean, standard deviation, 80%, 95%, and 99% confidence intervals, and margin of error for...
Find the mean, standard deviation, 80%, 95%, and 99% confidence intervals, and margin of error for those intervals. Show all work. $32,096 $29,716 $29,227 $27,209 $22,794 $19,306 $19,238 $19,164 18,994 $18,329 $17,978 $17,626 $16,823 $16,709 $15,967 $15,921 $15,908 $15,905 $15,638 $15,629 $14,414 $14,229 $14,137 $14,051 $13,907 $13,776 $13,281 $12,739 $12,300 $11,994 $11,262 $11,112 $10,984 $10,824 $10,823 $10,448 $10,081 $9,883 $9,668 $9,663 $9,337 $8,855 $8,741 $8,596 $8,385 $7,204 $7,072 $6,503 $5,653 $4,602
Determine the mean and standard deviation of your sample. Find the 80%, 95%, and 99% confidence...
Determine the mean and standard deviation of your sample. Find the 80%, 95%, and 99% confidence intervals. Make sure to list the margin of error for the 80%, 95%, and 99% confidence interval. Create your own confidence interval (you cannot use 80%, 95%, and 99%) and make sure to show your work. Make sure to list the margin of error. What trend do you see takes place to the confidence interval as the confidence level rises? Explain mathematically why that...
Determine the mean and standard deviation of your sample. Find the 80%, 95%, and 99% confidence...
Determine the mean and standard deviation of your sample. Find the 80%, 95%, and 99% confidence intervals. Make sure to list the margin of error for the 80%, 95%, and 99% confidence interval. Create your own confidence interval (you cannot use 80%, 95%, and 99%) and make sure to show your work. Make sure to list the margin of error. Problem Analysis—Write a half-page reflection. What trend do you see takes place to the confidence interval as the confidence level...
Determine the mean and standard deviation of your sample. Find the 80%, 95%, and 99% confidence...
Determine the mean and standard deviation of your sample. Find the 80%, 95%, and 99% confidence intervals. Make sure to list the margin of error for the 80%, 95%, and 99% confidence interval. Create your own confidence interval (you cannot use 80%, 95%, and 99%) and make sure to show your work. Make sure to list the margin of error. What trend do you see takes place to the confidence interval as the confidence level rises? Explain mathematically why that...
Given the data set below, construct a 95% confidence interval for the standard deviation. 98 71...
Given the data set below, construct a 95% confidence interval for the standard deviation. 98 71 124 116 118 131 102 93 95 99
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT