Question

In: Chemistry

Part A: A calorimeter contains 18.0 mL of water at 13.5∘C. When 2.30 g of X...

Part A: A calorimeter contains 18.0 mL of water at 13.5∘C. When 2.30 g of X (a substance with a molar mass of 69.0 g/mol) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0∘C. Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00 g/mL, and that no heat is lost to the calorimeter itself, nor to the surroundings. Part B: the reaction C12H22O11(s)+12O2(g)→12CO2(g)+11H2O(l) in which 10.0 g of sucrose, C12H22O11, was burned in a bomb calorimeter with a heat capacity of 7.50 kJ/∘C. The temperature increase inside the calorimeter was found to be 22.0∘C. Calculate the change in internal energy, ΔE, for this reaction per mole of sucrose.

Solutions

Expert Solution

Part A

18 ml water = 18 gm (density of water = 1gm/ml) 18 gm + 2.30 gm = 20.30 gm

T = 30 - 13.5 = 16.5 0 C

q = mass of solution specific heat of H2O(l)T

= 20.30 4.18 16.5

q = 1400.091 J

molar mass of X = 69gm/mole then 2.30 gm = 2.30/69 = 0.03333 mole

ΔH for 0.03333 mole is 1400.091 then ΔH for 1 mole = 1400.091/0.03333 = 42006.93 J

enthalpy change, ΔH, for this reaction per mole of X = 42006.93 J/mol = 42.00693 KJ/mol

Part B

Heat produced in bomb calorimeter when combusting a given amount of known substance is the internal energy of the substance combusted per the number of mole of the substance that was burned.

Here 10.0 gm of sucrose/ 342.3 gm/mol = 0.02921 mol

you have given heat capacity of calorimeter is 7.50 KJ/0C this mean that the tempreture of calorimeter increases

10C when 7.50 KJ of heat is absorbed by the calorimeter from combution process.

since tempreture increases was 220C when combusting the 0.02921 mole of sucrose then the combution process must given off (22.00C) (7.50KJ/0C = 165KJ

threfore the change in internal energy per mole of sucrose combusted would be = 165KJ/0.02921 mole =

5649 KJ/mol


Related Solutions

Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g...
Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g of X (a substance with a molar mass of 54.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
PART A A calorimeter contains 27.0 mL of water at 14.5 ∘C . When 1.70 g...
PART A A calorimeter contains 27.0 mL of water at 14.5 ∘C . When 1.70 g of X (a substance with a molar mass of 75.0 g/mol) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is...
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X...
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X (a substance with a molar mass of 64.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A calorimeter contains 31.0 mL of water at 15.0 ∘C . When 2.50 g of X...
A calorimeter contains 31.0 mL of water at 15.0 ∘C . When 2.50 g of X (a substance with a molar mass of 62.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
Given: • The solubility of X at 100ºC in water is 18.0 g/100 mL water. •...
Given: • The solubility of X at 100ºC in water is 18.0 g/100 mL water. • The solubility of X at 0ºC in water is 3.6 g/100 mL water. How many mL of boiling water would be required to dissolve 25g of X? If that solution was then cooled down to 0ºC, how many grams of X could then crystallize out? What would be the maximum yield recovery for X?
A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g...
A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g piece of ice is cooled to −20.0 °C and then placed in the calorimeter. Use the following specific heats: cAl = 900.0 J Kg-1 °C-1, cwater = 4186 J Kg-1 °C-1, cice = 2.10 x 103 J Kg-1 °C-1. The latent heat of fusion for water is LF = 333.5 x 103 J/Kg. (a) Find the final temperature of the system, assuming no heat...
When 50.0 mL of 60.0°C water was mixed in the calorimeter with 50.0 mL of 25.0°C...
When 50.0 mL of 60.0°C water was mixed in the calorimeter with 50.0 mL of 25.0°C water, the final temperature was measured as 40.8 °C. Assume the density for water is 1.000 g/mL regardless of temperature. a. Determine the magnitude of the heat lost by the hot water. b. determine the magnitude of the heat gained by the room temperature water. c. determine the heat gained by the calorimeter d. determine the calorimeter constant.
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C . Part A Determine the amount of heat, in J , lost by the copper block....
A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece...
A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece of iron is heated to 98.37 °C. The piece of iron is added to the coffee cup caloriemter and the contents reach thermal equilibrium at 23.60 °C. The specific heat capacity of iron is 0.449 J g⋅K and the specific heat capacity of water is 4.184 J g⋅K . How much heat, q , is lost by the piece of iron? How much heat,...
The heat capacity of a certain calorimeter is 2.30 kJ·K–1 when containing 1.00 L of water....
The heat capacity of a certain calorimeter is 2.30 kJ·K–1 when containing 1.00 L of water. When 10.0 g of ammonium nitrate are dissolved in water to make 1.00 L of solution in this calorimeter, the temperature drops 1.52 K. What is the molar enthalpy of solution of ammonium nitrate? I know the answer is +28.0 kJ·mol–1, but can someone explain the steps, please? Thank you.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT