Question

In: Chemistry

A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...

A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C .

Part A

Determine the amount of heat, in J , lost by the copper block.

Part B

Determine the amount of heat gained by the water. The specific heat of water is 4.18 J/g⋅K .

Solutions

Expert Solution

The amount of heat lost by copper block = mCu x CCu x T

Where;

mCu = Mass of copper = 124 g

CCu = Specific heat of copper = 0.385 J g-1 K-1

T = final temperature – Initial temperature

     = 30.3 oC – 100.4 oC

    = - 70.1 oC

    = - 70.1 K (change in temperature in oC = K)

So,

Q = mCu x CCu x T

   = (124 g) x (0.385 J g-1⋅K-1) x (- 70.1 K)

   = - 3346.57 J

PART B:

The amount of heat gained by water = mwater x Cwater x T

Where;

mwater = Mass of water = 130 g

Cwater = Specific heat of copper = 4.184 J g-1 K-1

T = final temperature – Initial temperature

     = 30.3 oC – 25.3 oC

    = 5 oC

    = 5 K (change in temperature in oC = K)

So,

Q = mwater x Cwater x T

   = (130 g) x (4.184 J g-1⋅K-1) x (5 K)

   = 2719.60 J


Related Solutions

A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece...
A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece of iron is heated to 98.37 °C. The piece of iron is added to the coffee cup caloriemter and the contents reach thermal equilibrium at 23.60 °C. The specific heat capacity of iron is 0.449 J g⋅K and the specific heat capacity of water is 4.184 J g⋅K . How much heat, q , is lost by the piece of iron? How much heat,...
A coffee cup calorimeter contains 480.0 g of water at 25.0 oC. To it are added:...
A coffee cup calorimeter contains 480.0 g of water at 25.0 oC. To it are added: 380.0 g of water at 53.5 oC 525.0 g of water at 65.5 oC Assuming the heat absorbed by the styrofoam is negligible, calculate the expected final temperature. The specific heat of water is 4.184 J g–1 K–1. Select one: a. 38.2 oC b. 48.2 oC c. 67.6 oC d. 88.7 oC
When 28 g of calcium chloride was dissolved in 100g water in a coffee-cup calorimeter, the...
When 28 g of calcium chloride was dissolved in 100g water in a coffee-cup calorimeter, the temperature rose from 25* Celcius to 41.3. What is the enthalpy change for this process? Assume the solution is equal to the specific heat of water.
A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g...
A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g piece of ice is cooled to −20.0 °C and then placed in the calorimeter. Use the following specific heats: cAl = 900.0 J Kg-1 °C-1, cwater = 4186 J Kg-1 °C-1, cice = 2.10 x 103 J Kg-1 °C-1. The latent heat of fusion for water is LF = 333.5 x 103 J/Kg. (a) Find the final temperature of the system, assuming no heat...
A 200 g aluminum calorimeter contains 500 g of water at 20 C. A 100 g...
A 200 g aluminum calorimeter contains 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. Find the final temperature of the system, assuming no heat losses. (The specific heat of ice is 2.0 kJ/kg K) A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? Would your answer to part b be different if...
In an experiment, 698 g of water is in a copper calorimeter cup of mass 204...
In an experiment, 698 g of water is in a copper calorimeter cup of mass 204 g. The cup and the water are at an initial temperature of 11.3 oC. An unknown material with a mass of 411 g at a temperature of 421.8 oC is placed in the water. The system reaches thermal equilibrium at 31.1 oC. What is the specific heat of the unknown material?
In an experiment, 426 g of water is in a copper calorimeter cup of mass 205...
In an experiment, 426 g of water is in a copper calorimeter cup of mass 205 g. The cup and the water are at an initial temperature of 10.9 oC. An unknown material with a mass of 361 g at a temperature of 296.1 oC is placed in the water. The system reaches thermal equilibrium at 36.1 oC. What is the specific heat of the unknown material? units = J/kg-C
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X...
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X (a substance with a molar mass of 64.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g...
Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g of X (a substance with a molar mass of 54.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
PART A A calorimeter contains 27.0 mL of water at 14.5 ∘C . When 1.70 g...
PART A A calorimeter contains 27.0 mL of water at 14.5 ∘C . When 1.70 g of X (a substance with a molar mass of 75.0 g/mol) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT