Question

In: Physics

A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g...

A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g piece of
ice is cooled to −20.0 °C and then placed in the calorimeter. Use the following specific
heats: cAl = 900.0 J Kg-1 °C-1, cwater = 4186 J Kg-1 °C-1, cice = 2.10 x 103 J Kg-1 °C-1. The
latent heat of fusion for water is LF = 333.5 x 103 J/Kg.
(a) Find the final temperature of the system, assuming no heat is transferred to
or from the system.
(b) A second piece of ice at −20.0 °C with a mass of 100.0 g is added. How
much solid ice remains in the system after the system reaches equilibrium?

Solutions

Expert Solution


Related Solutions

A 200 g aluminum calorimeter contains 500 g of water at 20 C. A 100 g...
A 200 g aluminum calorimeter contains 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. Find the final temperature of the system, assuming no heat losses. (The specific heat of ice is 2.0 kJ/kg K) A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? Would your answer to part b be different if...
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X...
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X (a substance with a molar mass of 64.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. A) Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) B) A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? C) Would your answer...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? Would your answer to part b...
If 200 g of water is contained in a 300g aluminum calorimeter at 20
If 200 g of water is contained in a 300g aluminum calorimeter at 20
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C . Part A Determine the amount of heat, in J , lost by the copper block....
A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece...
A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece of iron is heated to 98.37 °C. The piece of iron is added to the coffee cup caloriemter and the contents reach thermal equilibrium at 23.60 °C. The specific heat capacity of iron is 0.449 J g⋅K and the specific heat capacity of water is 4.184 J g⋅K . How much heat, q , is lost by the piece of iron? How much heat,...
Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g...
Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g of X (a substance with a molar mass of 54.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
PART A A calorimeter contains 27.0 mL of water at 14.5 ∘C . When 1.70 g...
PART A A calorimeter contains 27.0 mL of water at 14.5 ∘C . When 1.70 g of X (a substance with a molar mass of 75.0 g/mol) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is...
A calorimeter contains 31.0 mL of water at 15.0 ∘C . When 2.50 g of X...
A calorimeter contains 31.0 mL of water at 15.0 ∘C . When 2.50 g of X (a substance with a molar mass of 62.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT