Question

In: Chemistry

8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106...

8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106 at 730°C. Starting 3.20 moles of HBr in a 12.0-L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium.

the answer is

[H2] = [Br2] = 1.81×10-4 M

[HBr] = 0.267 M

but how and why?

Solutions

Expert Solution

Equilibrium expression:

Find concentration of Hbr from the moles and volume:  

= 0.2667 M Hbr(initial)

Set up the equilibrium table:

          H2 + Br2 = 2Hbr

Initial M : 0, 0, 0.2667

Change in M: -x, -x, +2x

Equilibrium M: x, x, 0.2667+2x

Plug these into the equilibrium equation:

solving this quadratic equation x = 1.81 x 10^-4

Now plug this into all the x-values to find the equilibrium concentrations:

[h2]=x= 1.81x10^-4 M

[Br2=x]= 1.81x10^-4 M

[br2]=0.2667+2x= 0.267 M


Related Solutions

The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃
                    The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃   Calculate the equilibrium concentrations of H2, I2, and HI at 430 ℃   if the initial concentrations are [H2] = [I2] = 0.222 M and [HI] = 0 M.[H2]eq = M[I2]eq = M[HI]eq = M
The equilibrium constant Kc for the reaction below is 0.00427 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00427 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0844 M and [Br] = 0.0763 M, calculate the concentrations of these species at equilibrium.
Consider the following reaction and its equilibrium constant: I2(g) + Br2(g) 2 IBr(g) Kc = 1.1...
Consider the following reaction and its equilibrium constant: I2(g) + Br2(g) 2 IBr(g) Kc = 1.1 × 102 This reaction mixture contains initially 0.41 M I2 and 0.27 M Br2. Calculate the equilibrium concentration of I2, Br2, and IBr? Please help with this, Can I find a example similar to this anywhere. I can't figure out some of the parts of this problem.
Find the value of the equilibrium constant Kc at 460°C for the reaction- ½ H2(g) +...
Find the value of the equilibrium constant Kc at 460°C for the reaction- ½ H2(g) + ½ I2(g) HI(g) given the following data: A 4.50-mol sample of HI is placed in a 1.00-L vessel at 460°C, and the reaction system is allowed to come to equilibrium. The HI partially decomposes, forming 0.343 mol H2 at equilibrium. A) 0.0123 B) 0.0081 C) 0.0309 D) 11.1 E) 5.69
The equilibrium constant for the following reaction: H2(g) + Br2(g) ↔ 2HBr (g) is 1.95 x...
The equilibrium constant for the following reaction: H2(g) + Br2(g) ↔ 2HBr (g) is 1.95 x 103 at a certain temperature. Find the equilibrium pressure of HBr if 10.70 atm of HBr is introduced into a sealed container at this temperature.
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ---> H2(g)...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ---> H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.384 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) -->H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) -->H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.257 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M The equilibrium constant, Kc, for the following reaction is 83.3 at 500 K. PCl3(g) + Cl2(g) -->PCl5(g) Calculate the equilibrium concentrations of reactant and products when 0.420 moles of PCl3 and...
The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌...
The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌ 2HI(g) Initially, 0.90 M H2, I2, and HI are introduced into a 5.0-L flask and allowed to come to equilibrium. What are the equilibrium concentrations of H2, I2, and HI in the flask? (10 points) (Does the size of flask matter since Molarity is given?)
Be sure to answer all parts. The equilibrium constant Kc for the Reaction: H2(g) + CO2(g)...
Be sure to answer all parts. The equilibrium constant Kc for the Reaction: H2(g) + CO2(g) <--> H2O(g) + CO(g) is 4.2 at 1650 C. Initially 0.87 mol H2 and 0.87 mol CO2 are injected into a 4.9 L flask. Calculate the concentraion of each species at equilibrium Equilibrium concentration of H2: ____ M Equilibrium concentraion of CO2: ___ M Equilibrium concentraion of H2O: _____M Equilibrium concentration of CO: ______M
Be sure to answer all parts. At 1280°C the equilibrium constant Kc for the reaction Br2(g)...
Be sure to answer all parts. At 1280°C the equilibrium constant Kc for the reaction Br2(g) ⇌ 2Br(g) is 1.1 ×10−3. If the initial concentrations are [Br2] = 0.0320 M and [Br] = 0.0290 M, calculate the concentrations of these two species at equilibrium. [Br2]eq = [Br]eq =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT