Question

In: Chemistry

Find the value of the equilibrium constant Kc at 460°C for the reaction- ½ H2(g) +...

Find the value of the equilibrium constant Kc at 460°C for the reaction-
½ H2(g) + ½ I2(g)
HI(g)
given the following data: A 4.50-mol sample of HI is placed in a 1.00-L vessel at 460°C, and the reaction system is allowed to come to equilibrium. The HI partially decomposes, forming 0.343 mol H2 at equilibrium.
A) 0.0123 B) 0.0081 C) 0.0309 D) 11.1 E) 5.69

Solutions

Expert Solution

Initial concentration of HI = number of moles / volume in L

                                    = 4.50 mol / 1.00 L

                                    = 4.50 M

                           HI(g)        ½ H2(g) + ½ I2(g)

initial moles    4.50    0    0

change -a +a/2    +a/2

Equb moles    4.50-a a/2    a/2

Given Equilibrium moles of H2 is = a/ 2 = 0.343 mol

                                                           a = 0.686 mol

So Equilibrium moles of HI = 4.50 - a = 4.50 - 0.686 = 3.814 moles

   Equilibrium concentration of HI = number of moles / volume in L

                                                = 3.814 mol / 1.0 L

                                                = 3.814 M

Equilibrium concentration of H2 & I2 = 0.343 mol / 1.0L

                                                    = 0.343 M

Equilibrium constant , K = ([H2(g)]½ [I2(g)]½ ) / [HI]

                                    = (0.343½ x 0.343 ½) / 3.814

                                    = 0.0899


Related Solutions

The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌...
The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌ 2HI(g) Initially, 0.90 M H2, I2, and HI are introduced into a 5.0-L flask and allowed to come to equilibrium. What are the equilibrium concentrations of H2, I2, and HI in the flask? (10 points) (Does the size of flask matter since Molarity is given?)
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2 (g) ---> 2 HI (g) Kc= 53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I 2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
Be sure to answer all parts. The equilibrium constant Kc for the Reaction: H2(g) + CO2(g)...
Be sure to answer all parts. The equilibrium constant Kc for the Reaction: H2(g) + CO2(g) <--> H2O(g) + CO(g) is 4.2 at 1650 C. Initially 0.87 mol H2 and 0.87 mol CO2 are injected into a 4.9 L flask. Calculate the concentraion of each species at equilibrium Equilibrium concentration of H2: ____ M Equilibrium concentraion of CO2: ___ M Equilibrium concentraion of H2O: _____M Equilibrium concentration of CO: ______M
The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃
                    The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃   Calculate the equilibrium concentrations of H2, I2, and HI at 430 ℃   if the initial concentrations are [H2] = [I2] = 0.222 M and [HI] = 0 M.[H2]eq = M[I2]eq = M[HI]eq = M
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106...
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106 at 730°C. Starting 3.20 moles of HBr in a 12.0-L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium. the answer is [H2] = [Br2] = 1.81×10-4 M [HBr] = 0.267 M but how and why?
For the reaction N2(g) + 3 H2(g) equilibrium reaction arrow 2 NH3(g) at 25.0°C, the Kc...
For the reaction N2(g) + 3 H2(g) equilibrium reaction arrow 2 NH3(g) at 25.0°C, the Kc of the reaction is 5.4 ✕ 105 and the ΔG° is −32.7 kJ/mol. Use the given concentrations to determine the following. [N2] = 0.0027 M [H2] = 0.0045 M [NH3] = 0.20 M (a) Determine the ΔG of the reaction. (b) Determine which direction the reaction will proceed in order to reach equilibrium.
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ---> H2(g)...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ---> H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.384 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) -->H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) -->H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.257 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M The equilibrium constant, Kc, for the following reaction is 83.3 at 500 K. PCl3(g) + Cl2(g) -->PCl5(g) Calculate the equilibrium concentrations of reactant and products when 0.420 moles of PCl3 and...
At a certain temperature, the equilibrium constant Kc for this reaction is 53.3 H2 + I2...
At a certain temperature, the equilibrium constant Kc for this reaction is 53.3 H2 + I2 ---> 2HI <--- at this temperature, 0.500 mol of H2 AND 0.500 mol of I2 were placed in 1.00L container to react. What concentration of HI is present at equilibrium? [HI]= ?M
For the reaction H2(g) + I2(g) ↔ 2HI the value of the equilibrium constant is 25....
For the reaction H2(g) + I2(g) ↔ 2HI the value of the equilibrium constant is 25. Starting with 1.00mol of each reactant in a 10.L vessel, how many moles of HI will be present at equilibrium?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT