Question

In: Chemistry

Be sure to answer all parts. The equilibrium constant Kc for the Reaction: H2(g) + CO2(g)...

Be sure to answer all parts.

The equilibrium constant Kc for the Reaction:

H2(g) + CO2(g) <--> H2O(g) + CO(g) is 4.2 at 1650 C. Initially 0.87 mol H2 and 0.87 mol CO2 are injected into a 4.9 L flask. Calculate the concentraion of each species at equilibrium

Equilibrium concentration of H2: ____ M

Equilibrium concentraion of CO2: ___ M

Equilibrium concentraion of H2O: _____M

Equilibrium concentration of CO: ______M

Solutions

Expert Solution

The equilibrium constant Kc for the Reaction:

H2(g) + CO2(g) <--> H2O(g) + CO(g) is 4.2 at 1650 C. Initially 0.87 mol H2 and 0.87 mol CO2 are injected into a 4.9 L flask. Calculate the concentraion of each species at equilibrium

Solution :

Lets find out concentration of each species.

[H2]= 0.87 mol /4.9 L =0.178 M

[CO2]= 0.87 mol / 4.9 L = 0.178 M

Now we write the reaction and set up the ICE chart

          H2(g) + CO2(g) <--> H2O(g) + CO(g)

I       0.178       0.178               0                      0

C   -x                   -x                 +x                +x

E (0.178


Related Solutions

Be sure to answer all parts. At 1280°C the equilibrium constant Kc for the reaction Br2(g)...
Be sure to answer all parts. At 1280°C the equilibrium constant Kc for the reaction Br2(g) ⇌ 2Br(g) is 1.1 ×10−3. If the initial concentrations are [Br2] = 0.0320 M and [Br] = 0.0290 M, calculate the concentrations of these two species at equilibrium. [Br2]eq = [Br]eq =
Find the value of the equilibrium constant Kc at 460°C for the reaction- ½ H2(g) +...
Find the value of the equilibrium constant Kc at 460°C for the reaction- ½ H2(g) + ½ I2(g) HI(g) given the following data: A 4.50-mol sample of HI is placed in a 1.00-L vessel at 460°C, and the reaction system is allowed to come to equilibrium. The HI partially decomposes, forming 0.343 mol H2 at equilibrium. A) 0.0123 B) 0.0081 C) 0.0309 D) 11.1 E) 5.69
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2 (g) ---> 2 HI (g) Kc= 53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I 2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌...
The equilibrium constant Kc is 54.3 at 430°C for the following reaction: H2(g) + I2(g) ⇌ 2HI(g) Initially, 0.90 M H2, I2, and HI are introduced into a 5.0-L flask and allowed to come to equilibrium. What are the equilibrium concentrations of H2, I2, and HI in the flask? (10 points) (Does the size of flask matter since Molarity is given?)
The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃
                    The equilibrium constant Kc for the reaction H2(g) + I2(g) ⇌ 2 HI(g) is 54.3 at 430 ℃   Calculate the equilibrium concentrations of H2, I2, and HI at 430 ℃   if the initial concentrations are [H2] = [I2] = 0.222 M and [HI] = 0 M.[H2]eq = M[I2]eq = M[HI]eq = M
The equilibrium constant (Kp) for the reaction below is 4.40 at 2000. K. H2(g) + CO2(g)...
The equilibrium constant (Kp) for the reaction below is 4.40 at 2000. K. H2(g) + CO2(g) ⇌ H2O(g) + CO(g) Calculate Δ G o for the reaction. kJ/mol Calculate Δ G for the reaction when the partial pressures are PH2 = 0.22 atm, PCO2 = 0.72 atm, PH2O = 0.66 atm, and PCO = 1.16 atm.
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106...
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106 at 730°C. Starting 3.20 moles of HBr in a 12.0-L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium. the answer is [H2] = [Br2] = 1.81×10-4 M [HBr] = 0.267 M but how and why?
Be sure to answer all parts. Consider the following reaction at equilibrium: A(g) ⇆ 2B(g) From...
Be sure to answer all parts. Consider the following reaction at equilibrium: A(g) ⇆ 2B(g) From the data shown here, calculate the equilibrium constant (both KP and Kc) at each temperature. Is the reaction endothermic or exothermic? Temperature (°C) [A] (M) [B] (M) 200 0.0180 0.870 300 0.150 0.790 400 0.240 0.695 Kc(200°C) = KP(200°C) = Kc(300°C) = KP(300°C) = Kc(400°C) = KP(400°C) = Cannot be determined. The reaction is exothermic. The reaction is endothermic
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138....
PS8.2. The equilibrium constant, KP, for the reaction CO2(g) + H2(g) H2O(g) + CO(g) is 0.138. Calculate the partial pressure of all species at equilibrium for each of the following original mixtures: a) 1.36 atm of CO2 and 1.36 atm of H2. b) 0.87 atm of CO2, 0.87 atm of H2 and 0.87 atm of H2O(g). c) 0.64 atm of H2O and 0.64 atm of CO.
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ---> H2(g)...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ---> H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.384 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT