In: Operations Management
| 
 Times (days)  | 
||||
| 
 Activity  | 
 Optimistic  | 
 Most Likely  | 
 Pessimistic  | 
 Preceding Tasks  | 
| 
 1  | 
 8  | 
 10  | 
 13  | 
 -  | 
| 
 2  | 
 5  | 
 6  | 
 8  | 
 -  | 
| 
 3  | 
 13  | 
 15  | 
 21  | 
 2  | 
| 
 4  | 
 10  | 
 12  | 
 14  | 
 1,3  | 
| 
 5  | 
 11  | 
 20  | 
 30  | 
 4  | 
| 
 6  | 
 4  | 
 5  | 
 8  | 
 5  | 
| 
 7  | 
 2  | 
 3  | 
 4  | 
 5  | 
| 
 8  | 
 4  | 
 6  | 
 10  | 
 7  | 
| 
 9  | 
 2  | 
 3  | 
 4  | 
 8,6  | 
(a)

(b)
| Activity | Preceding Tasks | a | m | b | te = (a + 4m + b) / 6 | Variance = (b - a)2/36 | 
| 1 | - | 8 | 10 | 13 | 10.167 | 0.694 | 
| 2 | - | 5 | 6 | 8 | 6.167 | 0.250 | 
| 3 | 2 | 13 | 15 | 21 | 15.667 | 1.778 | 
| 4 | 1,3 | 10 | 12 | 14 | 12.000 | 0.444 | 
| 5 | 4 | 11 | 20 | 30 | 20.167 | 10.028 | 
| 6 | 5 | 4 | 5 | 8 | 5.333 | 0.444 | 
| 7 | 5 | 2 | 3 | 4 | 3.000 | 0.111 | 
| 8 | 7 | 4 | 6 | 10 | 6.333 | 1.000 | 
| 9 | 8,6 | 2 | 3 | 4 | 3.000 | 0.111 | 
(c)
Early Start (ES), Early Finish (EF), Late Start (LS), and Late Finish (LF) time for each activity can be computed using the following rules.

| Activity | Preceding Tasks | te = (a + 4m + b) / 6 | ES | EF | LS | LF | Total float = LF - EF | 
| 1 | - | 10.167 | 0.000 | 10.167 | 11.667 | 21.833 | 11.667 | 
| 2 | - | 6.167 | 0.000 | 6.167 | 0.000 | 6.167 | 0.000 | 
| 3 | 2 | 15.667 | 6.167 | 21.833 | 6.167 | 21.833 | 0.000 | 
| 4 | 1,3 | 12.000 | 21.833 | 33.833 | 21.833 | 33.833 | 0.000 | 
| 5 | 4 | 20.167 | 33.833 | 54.000 | 33.833 | 54.000 | 0.000 | 
| 6 | 5 | 5.333 | 54.000 | 59.333 | 58.000 | 63.333 | 4.000 | 
| 7 | 5 | 3.000 | 54.000 | 57.000 | 54.000 | 57.000 | 0.000 | 
| 8 | 7 | 6.333 | 57.000 | 63.333 | 57.000 | 63.333 | 0.000 | 
| 9 | 8,6 | 3.000 | 63.333 | 66.333 | 63.333 | 66.333 | 0.000 | 
(d)
The critical path consists of activities with zero slack, so the critical path is 2-3-4-5-7-8-9.
| Activity | Preceding Tasks | te = (a + 4m + b) / 6 | Variance = (b - a)^2/36 | 
| 2 | - | 6.167 | 0.250 | 
| 3 | 2 | 15.667 | 1.778 | 
| 4 | 1,3 | 12.000 | 0.444 | 
| 5 | 4 | 20.167 | 10.028 | 
| 7 | 5 | 3.000 | 0.111 | 
| 8 | 7 | 6.333 | 1.000 | 
| 9 | 8,6 | 3.000 | 0.111 | 
| Total | 66.333 | 13.722 | 
So, project mean duration = 66.333
stdev = sqrt(13.722) = 3.704
So,
Prob{duration < 69} = NORM.DIST(69, 66.33, 3.704,1) = 0.764