In: Operations Management
Times (days) |
||||
Activity |
Optimistic |
Most Likely |
Pessimistic |
Preceding Tasks |
1 |
8 |
10 |
13 |
- |
2 |
5 |
6 |
8 |
- |
3 |
13 |
15 |
21 |
2 |
4 |
10 |
12 |
14 |
1,3 |
5 |
11 |
20 |
30 |
4 |
6 |
4 |
5 |
8 |
5 |
7 |
2 |
3 |
4 |
5 |
8 |
4 |
6 |
10 |
7 |
9 |
2 |
3 |
4 |
8,6 |
(a)
(b)
Activity | Preceding Tasks | a | m | b | te = (a + 4m + b) / 6 | Variance = (b - a)2/36 |
1 | - | 8 | 10 | 13 | 10.167 | 0.694 |
2 | - | 5 | 6 | 8 | 6.167 | 0.250 |
3 | 2 | 13 | 15 | 21 | 15.667 | 1.778 |
4 | 1,3 | 10 | 12 | 14 | 12.000 | 0.444 |
5 | 4 | 11 | 20 | 30 | 20.167 | 10.028 |
6 | 5 | 4 | 5 | 8 | 5.333 | 0.444 |
7 | 5 | 2 | 3 | 4 | 3.000 | 0.111 |
8 | 7 | 4 | 6 | 10 | 6.333 | 1.000 |
9 | 8,6 | 2 | 3 | 4 | 3.000 | 0.111 |
(c)
Early Start (ES), Early Finish (EF), Late Start (LS), and Late Finish (LF) time for each activity can be computed using the following rules.
Activity | Preceding Tasks | te = (a + 4m + b) / 6 | ES | EF | LS | LF | Total float = LF - EF |
1 | - | 10.167 | 0.000 | 10.167 | 11.667 | 21.833 | 11.667 |
2 | - | 6.167 | 0.000 | 6.167 | 0.000 | 6.167 | 0.000 |
3 | 2 | 15.667 | 6.167 | 21.833 | 6.167 | 21.833 | 0.000 |
4 | 1,3 | 12.000 | 21.833 | 33.833 | 21.833 | 33.833 | 0.000 |
5 | 4 | 20.167 | 33.833 | 54.000 | 33.833 | 54.000 | 0.000 |
6 | 5 | 5.333 | 54.000 | 59.333 | 58.000 | 63.333 | 4.000 |
7 | 5 | 3.000 | 54.000 | 57.000 | 54.000 | 57.000 | 0.000 |
8 | 7 | 6.333 | 57.000 | 63.333 | 57.000 | 63.333 | 0.000 |
9 | 8,6 | 3.000 | 63.333 | 66.333 | 63.333 | 66.333 | 0.000 |
(d)
The critical path consists of activities with zero slack, so the critical path is 2-3-4-5-7-8-9.
Activity | Preceding Tasks | te = (a + 4m + b) / 6 | Variance = (b - a)^2/36 |
2 | - | 6.167 | 0.250 |
3 | 2 | 15.667 | 1.778 |
4 | 1,3 | 12.000 | 0.444 |
5 | 4 | 20.167 | 10.028 |
7 | 5 | 3.000 | 0.111 |
8 | 7 | 6.333 | 1.000 |
9 | 8,6 | 3.000 | 0.111 |
Total | 66.333 | 13.722 |
So, project mean duration = 66.333
stdev = sqrt(13.722) = 3.704
So,
Prob{duration < 69} = NORM.DIST(69, 66.33, 3.704,1) = 0.764