In: Operations Management
Activity | Predecessor | Optimistic | Most Likely | Pessimistic |
A | 4 | 7 | 10 | |
B | 2 | 9 | 10 | |
C | A,B | 2 | 5 | 8 |
D | C | 16 | 19 | 28 |
E | C | 6 | 9 | 24 |
F | E | 1 | 7 | 13 |
G | C | 4 | 10 | 28 |
H | D,F | 2 | 5 | 14 |
I | G,F | 5 | 8 | 17 |
J | H,I | 2 | 5 | 8 |
Expected time of each activity,
Activity | to | tm | tp | te=(to+4⋅tm+tp)/6 | σ2=(tp-to/6)2 |
A | 4 | 7 | 10 | 7 | 1 |
B | 2 | 9 | 10 | 8 | 1.78 |
C | 2 | 5 | 8 | 5 | 1 |
D | 16 | 19 | 28 | 20 | 4 |
E | 6 | 9 | 24 | 11 | 9 |
F | 1 | 7 | 13 | 7 | 4 |
G | 4 | 10 | 28 | 12 | 16 |
H | 2 | 5 | 14 | 6 | 4 |
I | 5 | 18 | 17 | 15.67 | 4 |
J | 2 | 5 | 8 | 5 | 1 |
The earliest and latest expected time for each activity is calculated by considering the expected time te
Activity | Immediate Predecessors | Duration |
A | - | 7 |
B | - | 8 |
C | A,B | 5 |
D | C | 20 |
E | C | 11 |
F | E | 7 |
G | C | 12 |
H | D,F | 6 |
I | G,F | 15.67 |
J | H,I | 5 |
Edge and it's preceded and succeeded node
Edge | Node1 → Node2 |
A | 1→2 |
B | 1→3 |
d | 2→3 |
C | 3→4 |
D | 4→5 |
E | 4→6 |
G | 4→8 |
H | 5→9 |
F | 6→7 |
d | 7→5 |
d | 7→8 |
I | 8→9 |
J | 9→10 |
The network diagram for the project, along with activity time,
is
Forward Pass Method
E1=0
E2=E1+t1,2 [t1,2=A=7]=0+7=7
E3=Max{Ei+ti,3}[i=1,2]
=Max{E1+t1,3;E2+t2,3}
=Max{0+8;7+0}
=Max{8;7}
=8
E4=E3+t3,4 [t3,4=C=5]=8+5=13
E5=Max{Ei+ti,5}[i=4,7]
=Max{E4+t4,5;E7+t7,5}
=Max{13+20;31+0}
=Max{33;31}
=33
E6=E4+t4,6 [t4,6=E=11]=13+11=24
E7=E6+t6,7 [t6,7=F=7]=24+7=31
E8=Max{Ei+ti,8}[i=4,7]
=Max{E4+t4,8;E7+t7,8}
=Max{13+12;31+0}
=Max{25;31}
=31
E9=Max{Ei+ti,9}[i=5,8]
=Max{E5+t5,9;E8+t8,9}
=Max{33+6;31+15.67}
=Max{39;46.67}
=46.67
E10=E9+t9,10 [t9,10=J=5]=46.67+5=51.67
Backward Pass Method
L10=E10=51.67
L9=L10-t9,10 [t9,10=J=5]=51.67-5=46.67
L8=L9-t8,9 [t8,9=I=15.67]=46.67-15.67=31
L7=Min{Lj-t7,j}[j=8,5]
=Min{L8-t7,8;L5-t7,5}
=Min{31-0;40.67-0}
=Min{31;40.67}
=31
L6=L7-t6,7 [t6,7=F=7]=31-7=24
L5=L9-t5,9 [t5,9=H=6]=46.67-6=40.67
L4=Min{Lj-t4,j}[j=8,6,5]
=Min{L8-t4,8;L6-t4,6;L5-t4,5}
=Min{31-12;24-11;40.67-20}
=Min{19;13;20.67}
=13
L3=L4-t3,4 [t3,4=C=5]=13-5=8
L2=L3-t2,3 [t2,3=d=0]=8-0=8
L1=Min{Lj-t1,j}[j=3,2]
=Min{L3-t1,3;L2-t1,2}
=Min{8-8;8-7}
=Min{0;1}
=0
The critical path in the network diagram has been shown. This has
been done by double lines by joining all those events where
E-values and L-values are equal.
The critical path of the project is : 1-3-4-6-7-8-9-10 and critical
activities are B,C,E,F,d,I,J
The total project time is 51.67
The network diagram for the project, along with E-values and
L-values, is
****Please please please LIKE THIS ANSWER, so that I can get a small benefit, Please****