Question

In: Advanced Math

A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a...

A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a viscous damper with damping constant 2 lb *s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s^2 as the acceleration due to gravity. Pay close attention to the units. Leave answer in terms of exact numbers(no decimals).

Solutions

Expert Solution

weight is w=17 pound

gravity is 32 m/s2

mass is given by

slug

.

a force of 17 pounds, stretches a spring 7 inch = 7/12 feet

so x=7/12

from the Hooke's law, spring constant k is

.

.damping constant is

DE is given by

find roots

for complex roots general solution is

....................(1)

here mass is initially released from rest from a point 2 inches above the equilibrium position.

so y(0)=-2

...........put it back in equation 1

.

......................(2)

take derivative

here initial velocity is so y'(0)=2

.................put it back in equation 2

.

.......................answer in inches

or

.......................answer in feet


Related Solutions

A mass weighing 12lb stretches a spring 10in.. The mass is attached to a viscous damper...
A mass weighing 12lb stretches a spring 10in.. The mass is attached to a viscous damper with damping constant 3lb*s/ft. The mass is pushed upward, contracting the spring a distance of 2in, and then set into motion with a downward velocity of 4in/s. Determine the position of the mass at any time . Use as 32ft/s^2the acceleration due to gravity. Pay close attention to the units.
A mass weighing 12lb stretches a spring 10in. The mass is attached to a viscous damper...
A mass weighing 12lb stretches a spring 10in. The mass is attached to a viscous damper with damping constant 3lb⋅s/ft. The mass is pushed upward, contracting the spring a distance of 2in, and then set into motion with a downward velocity of 4in/s. Determine the position u of the mass at any time t. Use 32ft/s2 as the acceleration due to gravity. Pay close attention to the units. u(t)=
(1 point) A mass weighing 4 lb4 lb stretches a spring 6 in.6 in. The mass...
(1 point) A mass weighing 4 lb4 lb stretches a spring 6 in.6 in. The mass is displaced 8 in8 in in the downward direction from its equilibrium position and released with no initial velocity. Assuming that there is no damping, and that the mass is acted on by an external force of 5cos(7t)5cos⁡(7t) lb, solve the initial value problem describing the motion of the mass. For this problem, please remember to use English units: ft, lb, sec.ft, lb, sec....
A mass weighing 8 lb stretches a spring 1/2 foot. Then mass is initially released from...
A mass weighing 8 lb stretches a spring 1/2 foot. Then mass is initially released from rest at a point 1 foot above the equilibrium. a) Solve the equation of motion with no damping. Use the same spring system and initial conditions as in Problem above. The spring system is now placed in a medium that offers a damping force equal to 2 times the instantaneous velocity. b) Solve the equation of motion c) At what time does the mass...
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes...
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes to rest at its equilibrium position. The spring constant is 4 lb/ft and there is no damping. A. How far (in feet) does the mass stretch the spring from its natural length? L=   B. What is the resonance frequency for the system? ω0=   C. At time t=0 seconds, an external force F(t)=3cos(ω0t) is applied to the system (where ω0 is the resonance frequency from...
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in....
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in. and to adashpot that provides 1.5 lb of resistance for every foot per second of velocity.(a) If the weight is pulled down 1 ft below its static equilibrium position and then released from rest at time t = 0, find its position function .(b) Find the frequency, time-varying amplitude, and phase angle of the motion.(Give exact answers for both parts.
A force of 400N stretches a spring 2m. A mass of 50kg is attached to the...
A force of 400N stretches a spring 2m. A mass of 50kg is attached to the end of the spring and put in a viscous fluid with a damping force that is 100 times the instantaneous velocity. The mass is released from the equilibrium position with a downward velocity of 1m/s. (a) Determine the natural frequency of the system. (b) Determine the level of damping in the system. (c) Write the differential equation of motion (d) Solve the system and...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it 28.0 cm. It is then pulled down an additional 12.0 cm and then let go. What is the maximum acceleration of the mass? At what position does this occur? What is the position and velocity of the mass 0.63 s after release?
A 16​-lb weight stretches a spring 16 ft. The​ spring-mass system is in a medium with...
A 16​-lb weight stretches a spring 16 ft. The​ spring-mass system is in a medium with a damping constant of 1.5 ​lb-sec/ft, and an external force given by f (t)= 3+e^-3t ​(in pounds) is being applied. What is the solution function describing the position of the mass at any time of the mass is released from 1ft below the equilibrium position with an initial velocity of 2 ​ft/sec downward?
A mass weighing 10 pounds stretches a spring 3 inches. This mass is removed and replaces...
A mass weighing 10 pounds stretches a spring 3 inches. This mass is removed and replaces with a mass weighing 20 pounds, which is initially released from a point 4 inches above the equilibrium position with an upward velocity of 54 ft/s. Find the equation of motion, x(t) .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT