Question

In: Advanced Math

(1 point) A mass weighing 4 lb4 lb stretches a spring 6 in.6 in. The mass...

(1 point) A mass weighing 4 lb4 lb stretches a spring 6 in.6 in.
The mass is displaced 8 in8 in in the downward direction from its equilibrium position and released with no initial velocity.
Assuming that there is no damping, and that the mass is acted on by an external force of 5cos(7t)5cos⁡(7t) lb,
solve the initial value problem describing the motion of the mass.

For this problem, please remember to use English units: ft, lb, sec.ft, lb, sec.
Also remember to use g=32 ft/sec2.g=32 ft/sec2.

The solution to the initial value problem is:

u(t)=

At what frequency ωω will resonance occur?

Solutions

Expert Solution


Related Solutions

A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a...
A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a viscous damper with damping constant 2 lb *s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s^2 as the acceleration due to gravity. Pay close attention to the units. Leave answer in terms of...
A mass weighing 8 lb stretches a spring 1/2 foot. Then mass is initially released from...
A mass weighing 8 lb stretches a spring 1/2 foot. Then mass is initially released from rest at a point 1 foot above the equilibrium. a) Solve the equation of motion with no damping. Use the same spring system and initial conditions as in Problem above. The spring system is now placed in a medium that offers a damping force equal to 2 times the instantaneous velocity. b) Solve the equation of motion c) At what time does the mass...
A mass that weighs 32 lb stretches 4/3 ft of a spring. The mass is initially...
A mass that weighs 32 lb stretches 4/3 ft of a spring. The mass is initially released from rest from a point 1 ft below the equilibrium position, and the subsequent movement takes place in a medium that offers a damping force equal to the instantaneous velocity. Using differential equations find the position of the mass at time t if an external force equal to f (t) = 10cos (t) is applied to the mass
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 8 inches below the equilibrium position. (a) Find the position x of the mass at the times t = π/12, π/8, π/6, π/4, and 9π/32 s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(π/12) = −14​    ft x(π/8) = −.5    ft x(π/6) = −0.25    ft x(π/4) = 0.5    ft x(9π/32) = 0.35    ft (b) What is...
(1 point) A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches...
(1 point) A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 1/6 feet. The ball is started in motion from the equilibrium position with a downward velocity of 4 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note...
A mass weighing 8 pounds stretches a spring 4 feet. The medium through the mass moves...
A mass weighing 8 pounds stretches a spring 4 feet. The medium through the mass moves offers a damping force numerically equal to sqrt(2) times the instantaneous velocity. Find the equation of motion if mass is released from equilibrium position with a downward velocity of 5 ft/s. Find the time at which the mass attains its extreme displacement from the equilibrium position. What is the position of the mass at this instant? The acceleration of gravity is g = 32...
A mass weighing 4 pounds stretches a spring 4/3 ft. The entire system is immersed in...
A mass weighing 4 pounds stretches a spring 4/3 ft. The entire system is immersed in a fluid offering a damping force numerically equal to the instantaneous velocity. Beginning at t=0, an external force equal to f(t)=e^-t is impressed on the system. Determine an initial valued differential equation for the displacement of the mass from its equilibrium point at time t>0.
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in....
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in. and to adashpot that provides 1.5 lb of resistance for every foot per second of velocity.(a) If the weight is pulled down 1 ft below its static equilibrium position and then released from rest at time t = 0, find its position function .(b) Find the frequency, time-varying amplitude, and phase angle of the motion.(Give exact answers for both parts.
a mass weighing 10 newtons stretches a spring 10/49m. the mass is releases from 6 m...
a mass weighing 10 newtons stretches a spring 10/49m. the mass is releases from 6 m below equilibrium with a downward velocity of 42 m/s in a median which offers a damping force numerically equal to 14 times the instantaneous velocity. use g=10m^2/s. (a) Find the equation of motion. y(t) = m. (b) find the time when the spring reaches its maximum displacement.
A mass weighing 16lbs stretches a spring 4 feet. The medium offers a damping force that...
A mass weighing 16lbs stretches a spring 4 feet. The medium offers a damping force that is numerically equal to 3 times the instantaneous velocity. The mass is intially released from rest from a point 3 feet above the equilibrium position. Find the equation of motion. Also, will the mass pass through the equilibrium position? If yes, find the time when it occurs.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT