Question

In: Physics

A 8.50 kg mass is attached to the end of a hanging spring and stretches it...

A 8.50 kg mass is attached to the end of a hanging spring and stretches it 28.0 cm. It is then pulled down an additional 12.0 cm and then let go. What is the maximum acceleration of the mass? At what position does this occur? What is the position and velocity of the mass 0.63 s after release?

Solutions

Expert Solution


Related Solutions

An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come...
An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume that the spring constant is 50 N/m and the damping constant is 4 N-sec/m At time t=0, an external force of 8sin(3t)cos(3t) is applied to the system. Determine the amplitude and frequency of the steady-state solution.
A 1-kg mass stretches a spring 20 cm. The system is attached to a dashpot that...
A 1-kg mass stretches a spring 20 cm. The system is attached to a dashpot that imparts a damping force equal to 14 times the instantaneous velocity of the mass. Find the equation of motion if the mass is released from equilibrium with an upward velocity of 3 m/sec. SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB...
An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the...
An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the spring 9.6 inches, coming to rest at its stretched equilibrium position. The weight is displaced 8 inches below this stretched equilibrium position, and at time t = 0 the mass is released. At the same instant, an external force of F(t)= 2cos(2t) pounds is applied to the system. The damping constant is 1 lb/(ft/sec). Find the function that gives the displacement of the mass...
A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring
PLEASE ANSWER ALL 3 WILL THUMBS UP 1) A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 8 m/s. Find the equation of motion. x(t)=? m 2) Find the charge on the capacitor and the current in an LC-series circuit when L = 0.1 h, C = 0.1 f, E(t) = 100 sin(γt)...
A block with mass 5 kg is attached to the end of a horizontal spring with...
A block with mass 5 kg is attached to the end of a horizontal spring with spring constant 200N/m. The other end of the spring is attached to a wall. The spring is stretched 10cm in the positive directions from its equilibrium length. Assume that the block is resting on a frictionless surface. A) When the spring is fully stretched, what is the magnitude of the force from the spring on the block? B) We then release the block, letting...
1. Assume that hanging a 100 gram mass from a given spring stretches the spring by...
1. Assume that hanging a 100 gram mass from a given spring stretches the spring by 2 cm. If two springs of this kind are connected back to back (series configuration), how much would the combination stretch if a 200 gram mass is suspended? a. 1 cm b. 2 cm c. 3 cm d. 4 cm e. none of these 2. What would be the answer to the previous question if the two springs were connected in parallel configuration? a....
A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a...
A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a viscous damper with damping constant 2 lb *s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s^2 as the acceleration due to gravity. Pay close attention to the units. Leave answer in terms of...
A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall.
 Part AA 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. The mass is pulled away from the equilibrium position (x = 0) a distance of 17.5 cm and released. It then oscillates in simple harmonic motion with a frequency of 8.38 Hz. At what position, measured from the equilibrium position, is the mass 2.50 seconds after it is released?–5.23 cm16.6 cm–5.41 cm–8.84 cm–11.6 cm Part BA 23.3-kg...
A force of 400N stretches a spring 2m. A mass of 50kg is attached to the...
A force of 400N stretches a spring 2m. A mass of 50kg is attached to the end of the spring and put in a viscous fluid with a damping force that is 100 times the instantaneous velocity. The mass is released from the equilibrium position with a downward velocity of 1m/s. (a) Determine the natural frequency of the system. (b) Determine the level of damping in the system. (c) Write the differential equation of motion (d) Solve the system and...
A mass of 20 grams stretches a spring 5cm. Suppose that the mass is also attached...
A mass of 20 grams stretches a spring 5cm. Suppose that the mass is also attached to a damper with constant coefficient 0.4 N·s/m. Initially the mass is pulled down an additional 2cm and released. Write a differential equation for the position u(t) of the mass at time t (make the units meters, kilograms, Newtons, seconds). Do NOT solve the differential equation. The solution to a differential equation that models a vibrating spring is u(t) = 4e−t cos(3t) + 3e−t...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT