Question

In: Physics

A force of 400N stretches a spring 2m. A mass of 50kg is attached to the...

A force of 400N stretches a spring 2m. A mass of 50kg is attached to the end of the spring and put in a viscous fluid with a damping force that is 100 times the instantaneous velocity. The mass is released from the equilibrium position with a downward velocity of 1m/s.

(a) Determine the natural frequency of the system.

(b) Determine the level of damping in the system.

(c) Write the differential equation of motion

(d) Solve the system and find the position of the mass at 5s.

Solutions

Expert Solution


Related Solutions

A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring
PLEASE ANSWER ALL 3 WILL THUMBS UP 1) A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 8 m/s. Find the equation of motion. x(t)=? m 2) Find the charge on the capacitor and the current in an LC-series circuit when L = 0.1 h, C = 0.1 f, E(t) = 100 sin(γt)...
A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a...
A mass weighing 17 lb stretches a spring 7 in. The mass is attached to a viscous damper with damping constant 2 lb *s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s^2 as the acceleration due to gravity. Pay close attention to the units. Leave answer in terms of...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it 28.0 cm. It is then pulled down an additional 12.0 cm and then let go. What is the maximum acceleration of the mass? At what position does this occur? What is the position and velocity of the mass 0.63 s after release?
A mass of 20 grams stretches a spring 5cm. Suppose that the mass is also attached...
A mass of 20 grams stretches a spring 5cm. Suppose that the mass is also attached to a damper with constant coefficient 0.4 N·s/m. Initially the mass is pulled down an additional 2cm and released. Write a differential equation for the position u(t) of the mass at time t (make the units meters, kilograms, Newtons, seconds). Do NOT solve the differential equation. The solution to a differential equation that models a vibrating spring is u(t) = 4e−t cos(3t) + 3e−t...
A mass weighing 12lb stretches a spring 10in.. The mass is attached to a viscous damper...
A mass weighing 12lb stretches a spring 10in.. The mass is attached to a viscous damper with damping constant 3lb*s/ft. The mass is pushed upward, contracting the spring a distance of 2in, and then set into motion with a downward velocity of 4in/s. Determine the position of the mass at any time . Use as 32ft/s^2the acceleration due to gravity. Pay close attention to the units.
A mass of 1 slug, when attached to a spring, stretches it 2 feet. It is...
A mass of 1 slug, when attached to a spring, stretches it 2 feet. It is released from a point 1 foot above the equilibrium position with a downward velocity of 2 ft/s. 1) Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 4 times the instantaneous velocity. 2) Classify the motion as underdamped, overdamped, or critically damped.
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then...
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at t = 0, an external force equal to f(t) = 10 sin(4t) is applied to the system. Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = ____________ft
two small blocks with masses m and 2m are attached to a spring with negligible mass,...
two small blocks with masses m and 2m are attached to a spring with negligible mass, spring constant k, and has a natural length defined by L. The blocks and the springs rest on a horizontal surface without friction with the block with mass m in frictionless contact with a wall located at x=0. the system is entirely released from rest at t=0 with spring compressed to a length l/2. Determine the linear momentum impulse delivered to the lighter block...
A 1-kg mass stretches a spring 20 cm. The system is attached to a dashpot that...
A 1-kg mass stretches a spring 20 cm. The system is attached to a dashpot that imparts a damping force equal to 14 times the instantaneous velocity of the mass. Find the equation of motion if the mass is released from equilibrium with an upward velocity of 3 m/sec. SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB...
A particle of mass 2.00 kg is attached to a spring with a force constant of...
A particle of mass 2.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 4.00 m. A 7.00 kg object is dropped vertically on top of the 2.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) Does the amplitude of the vibrating system increase or decrease as a result of the collision? decreases increases no change (b)By...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT