In: Statistics and Probability
Describe the standard normal curve.
a. What does the mean, median, and mode equal?
Q1)A standard normal curve is a special case of a normal curve when the mean = 0 and standard deviation = 1
It is a bell shaped curve, just like the normal curve. It is Unimodal in nature.
The area under the curve = 1.
Q2) For the standard normal curve, Mean = Median = Mode = 0
This is because the graph of standard normal curve is syymetrical and the mean divides the graph into 2 equal halves, hence there is equal sets of values on either side of the mean, hence Mean = Median. The graph is also unimodal, and it is achieved at Mean = 0. Hence Mean = Median = Mode = 0.
Q3&4) There is 3 standard deviations on the right and left side of the mean in the standard normal curve. The third standard deviation on either side, together, cover 99.7% of the area under the curve.
Q5) Y axis represents the value of prabability density function, plotted against different values of x.
Q6)