Question

In: Other

CO2(g) + C(s) = 2 CO(g) a) Using the Bouduard reaction, calculate gas composition in a...

CO2(g) + C(s) = 2 CO(g) a) Using the Bouduard reaction, calculate gas composition in a furnace under 1 atm total pressure and 1100 K. b) Under the same furnace conditions, is it possible to reduce VO to V by CO? ( VO + CO = V + CO2 ) C(s) + O2(g) = CO2(g) o GT = - 394100 – 0.84 T J/mol C(s) + ½ O2(g) = CO(g) o GT = - 111700 – 87.65 T J/mol V(s) + ½ O2(g) = VO (s) o GT = - 424700 + 80.04 T J/mol

Solutions

Expert Solution


Related Solutions

Coke can be converted into CO�a fuel gas�in the reaction CO2 (g) + C (s) ?...
Coke can be converted into CO�a fuel gas�in the reaction CO2 (g) + C (s) ? 2 CO (g) a coke that contains 84% carbon by mass and the balance noncombustible ash is fed to a reactor with a stoichiometric amount of CO2. The coke is fed at 77�F, and the CO2 enters at 400�F. Heat is transferred to the reactor in the amount of 5859 Btu/lbm coke fed, the gaseous products and the solid reactor effluent (the ash and...
Consider this reaction between solid carbon and carbon dioxide gas. C(s) + CO2(g) ⇌ 2 CO(g);...
Consider this reaction between solid carbon and carbon dioxide gas. C(s) + CO2(g) ⇌ 2 CO(g); ΔH = +172.5 kJ/mol Please explain the following: When chemical systems are subjected to stresses, the equilibrium position may shift toward the reactants or products, or it may be unaffected. How would each of the following changes affect this equilibrium? 1. decreasing the temp 2. increasing the CO2 3. increasing the volume of the container 4. adding C 5. adding a catlyst Options: Would...
Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g) In the preceding reaction, _____ is...
Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g) In the preceding reaction, _____ is in elemental form and has a standard enthalpy of ______ . This reaction is a ______ reaction (think heat). The standard enthalpy for the reaction is _______ kJ (3 S.F.)
Calculate ΔrH for the following reaction: C(s)+H2O(g)→CO(g)+H2(g) Use the following reactions and given ΔrH's. C(s)+O2(g)→CO2(g), ΔrH=...
Calculate ΔrH for the following reaction: C(s)+H2O(g)→CO(g)+H2(g) Use the following reactions and given ΔrH's. C(s)+O2(g)→CO2(g), ΔrH= -393.5 kJmol−1 2CO(g)+O2(g)→2CO2(g), ΔrH= -566.0 kJmol−1 2H2(g)+O2(g)→2H2O(g), ΔrH= -483.6 kJmol−1 Express your answer using one decimal place.
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke...
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke that contains 84% carbon by mass and the balance noncombustible ash is fed to a reactor with a stoichiometric amount of CO2. The coke is fed at 77 oF, and the CO2 enters at 400 oF. Heat is transferred to the reactor in the amount of 5800 btu/lbm coke fed. The gaseous products and the solid reactor effluent (the ash and unburned carbon) leave...
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke...
Coke can be converted into CO in following reaction CO2(g) + C(s) -> 2CO(g). A coke that contains 84% carbon by mass and the balance noncombustible ash is fed to a reactor with a stoichiometric amount of CO2. The coke is fed at 77 oF, and the CO2 enters at 400 oF. Heat is transferred to the reactor in the amount of 5200 btu/lbm coke fed. The gaseous products and the solid reactor effluent (the ash and unburned carbon) leave...
Fe2O3(s) + 3 CO(g) —> 2 Fe(s) + 3 CO2(g) delta H = ___ a. Calculate...
Fe2O3(s) + 3 CO(g) —> 2 Fe(s) + 3 CO2(g) delta H = ___ a. Calculate delta H for the reaction above using the following know thermochemical reactions 2Fe(s) + 3/2 O2(g) —> Fe2O3(s) delta h=-824.2 kJ CO(g) + 1/2 O2(g) —> CO2(g) delta h=-282.7. b. Is this reaction endothermic, exothermic, or both? How do you know?
Calculate the equilibrium composition for the reaction Cgraphite + H2O(g) _<->CO(g) + H2(g) at T =...
Calculate the equilibrium composition for the reaction Cgraphite + H2O(g) _<->CO(g) + H2(g) at T = 298 K, 500 K, 1000 K, and 2000 K and a pressure of 1 bar. For the initial number of moles, use 1 mole of graphite, 3 moles of H2O(g), and no CO or H2.
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in...
Consider the reaction shown below. PbCO3(s) PbO(s) + CO2(g) Calculate the equilibrium pressure of CO2 in the system at the following temperatures. (a) 210°C atm = _______ atm (b) 480°C atm = _______ atm Note: To find the value of the equilibrium constant at each temperature you must first find the value of G0 at each temperature by using the equation G0 = H0 - TS0. For this reaction the values are H0 = +88.3 kJ/mol and S0= 151.3 J/mol*K
At 125 C Kp=0.254 for the reaction 2NaHCO3 (s) <-> Na2CO3 (s) + CO2 (g) +...
At 125 C Kp=0.254 for the reaction 2NaHCO3 (s) <-> Na2CO3 (s) + CO2 (g) + H2O (g). At 2.50 L flask containing a substantial amount of NaHCO3 is evacuated and heated to 125 C. what mass of Na2CO3 (molar mass=106.0 g/mol) is also produced when equilibrium is established?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT