Question

In: Physics

Two balls connected by a rod, as shown in the figure below (Ignore rod’s mass).

Two balls connected by a rod, as shown in the figure below (Ignore rod’s mass). Mass of ball X is 8kg and the mass of ball Y is 5 kg  What is the moment of inertia of the system about AB? 

 

Solutions

Expert Solution

Given

 

The rotation axis is AB

 

mX = 8kg mass of object x

 

mY = 5kg mass of object y

 

rX = 10cm = 0.1 distance from centre object x

 

rY = 40cm = 0.4m distance from centre object y

 

Solution: 

 

I = mX rX^2 + mY rY^2

 

I = (0.8)× (0.1)^2 + (0.8)× (0.4)^2

 

I = 8 × 10^-3 + 0.128

 

I = 0.136kg m2. 

 


I = mX rX^2 + mY rY^2

Mx- mass of 1 st object 

My- mass of 2 nd object 

X,Y- distance from centre for both objects

 

Related Solutions

Two balls connected by a rod as shown in the figure below (Ignore rod’s mass). What is the moment of inertia of the system?
  Two balls connected by a rod as shown in the figure below (Ignore rod’s mass). What is the moment of inertia of the system? Given :  mX = 400 grams = 0.4kg   mY = 500 grams = 0.5 kg   rX = 0cm = 0m   rY = 30cm = 0.3m
Mounted on a low-mass rod of length 0.20 m are four balls (see figure below)
Mounted on a low-mass rod of length 0.20 m are four balls (see figure below). Two balls (shown in red on the diagram), each of mass 0.84 kg, are mounted at opposite ends of the rod. Two other balls, each of mass 0.31 kg (shown in blue on the diagram), are each mounted a distance 0.05 m from the center of the rod. The rod rotates on an axle through the center of the rod (indicated by the "X" in...
The rod shown below is made of two materials. The figure is not drawn to scale....
The rod shown below is made of two materials. The figure is not drawn to scale. Each conductor has a square cross section 10.00 mm on a side. The first material has a resistivity of 4.00×10-8Ω∙m and is 50.0 cm long, while the second material has a resistivity of 6.00×10-8 Ω · m and is 80.0 cm long. If a potential difference of 100V is applied between the front and the back faces, determine the following physical quantities: total amount...
Voltage, Current, Resistance The rod shown below is made of two materials. The figure is not...
Voltage, Current, Resistance The rod shown below is made of two materials. The figure is not drawn to scale. Each conductor has a square cross section 10.00 mm on a side. The first material has a resistivity of 4.00×10-8Ω∙m and is 50.0 cm long, while the second material has a resistivity of 6.00×10-8 Ω · m and is 80.0 cm long. If a potential difference of 100V is applied between the front and the back faces, determine the following physical...
In the figure below the two blocks are connected by a string of negligible mass passing...
In the figure below the two blocks are connected by a string of negligible mass passing over a frictionless pulley. m1 = 10.0 kg and m2 = 4.50 kg and the angle of the incline is θ = 44.0°. Assume that the incline is smooth. (Assume the +x direction is down the incline of the plane.) (a) With what acceleration does the mass m2 move on the incline surface? Indicate the direction with the sign of your answer. (b) What...
As shown in the figure, a conducting rod with a linear mass density of 0.0395 kg/m...
As shown in the figure, a conducting rod with a linear mass density of 0.0395 kg/m is suspended by two flexible wires of negligible mass in a uniform magnetic field directed into the page. A power supply is used to send a current through the rod such that the tension in the support wires is zero. (a) If the magnitude of the magnetic field is 3.70 T, determine the current in the conducting rod. (b) Determine the direction of the...
Two balls of mass 3.29 kg are attached to the ends of a thin rod of...
Two balls of mass 3.29 kg are attached to the ends of a thin rod of negligible mass and length 72 cm. The rod is free to rotate without friction about a horizontal axis through its center. A putty wad of mass 127 g drops onto one of the balls, with a speed 2.5 m/s, and sticks to it. What is the angular speed of the system just after the putty wad hits? 1.31×10-1 rad/s ¡Correcto! Su recibo es 160-8476...
Two 1.9 kg balls are attached to the ends of a thin rod of negligible mass,...
Two 1.9 kg balls are attached to the ends of a thin rod of negligible mass, 62 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 0.42 kg wad of wet putty drops onto one of the balls with a speed of 3.2 m/sec and sticks to it. 1) What is the ratio of the magnitude of angular momentum of the...
Consider three gas connected gas containers as shown in the figure below. Consider three gas connected...
Consider three gas connected gas containers as shown in the figure below. Consider three gas connected gas containers as shown in the figure below. CO2 (g) P = 2.13, V = 1.50L H2(g) P = 0.861 atm, V = 1.00 L Ar (g) p = 1.15atm, V = 2.00L    T = 298K Assume, that you open the two stopcock so that the gases can flow freely. Calculate the change of the chemical potential of the entire system due to mixing...
The composite shaft shown in the figure consists of two steel pipes that are connected at...
The composite shaft shown in the figure consists of two steel pipes that are connected at flange B and securely attached to rigid walls at A and C. Steel pipe (1) has an outside diameter of 158 mm and a wall thickness of 6 mm. Steel pipe (2) has an outside diameter of 114 mm and a wall thickness of 4 mm. Both pipes are 3.5 m long and have a shear modulus of 80 GPa. If a concentrated torque...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT