In: Chemistry
Calculate the energy gap in J, kJ/mol, eV, and wavenumber (cm-1) between the level n = 5 and n = 1 of an electron confined to a microscopic 1-D box of length 2.00 Angstroms.
1- J
2- kJ/mol
3 -eV
4- cm-1
ΔE = E ( 5 ) – E ( 1 )
E ( n ) = n ² h ² / [ 8 m L ² ] … where n = 1 , 2 , 3 , ⋯ , or
any integer
… m = mass of the particle inside the box (the electron in this
case
h is Planck’s constant; 6.63 × 10 ⁻ ³⁴ J • s
mass of the electron m = 9.11 × 10 ⁻ ³¹ kg
L = length of the box; 2.00 Angstroms or 2.0 × 10-10 meters
ΔE = E ( 5 ) – E ( 1 )
ΔE = 5 ² h ² / [ 8 m L ² ] - 1 ² h ² / [ 8 m L ² ]
ΔE = (6.63 × 10 ⁻ ³⁴ J • s) ² / [ 8 *9.11 × 10 ⁻ ³¹ kg (2.0 × 10-10 meters) ² ] (25-1)
ΔE =3.7*10^-17 J
energy of an electron = 3.7*10^-17 J or 3.7*10^-20 KJ
energy of e1mol electron = 6.022 × 1023 *3.7*10^-20 KJ = 22281.4 KJ / mol
energy of an electron = 3.7*10^-17 J or 3.7*10^-20 KJ
1.00 J = 6.24 eV
3.7*10^-17 J * 6.24 eV / 1.00 J =23.088*10^-17 eV
wave number=k=1/λ
k = 1/λ= 2517 (1/m)
and
E=h*c*k
now calculate the wave number as follows:
3.7*10^-17 J =6.63 × 10 ⁻ ³⁴ J • s *3.00*10^8 m/s*k
k= 3.7*10^-17 J / 6.63 × 10 ⁻ ³⁴ J • s *3.00*10^8 m/s
k= 0.186*10^9 / m or 1.86*10^10 / cm