Question

In: Statistics and Probability

A random sample of 100100 observations produced a mean of x¯¯¯=38.6x¯=38.6 from a population with a...

A random sample of 100100 observations produced a mean of x¯¯¯=38.6x¯=38.6 from a population with a normal distribution and a standard deviation σ=4.42σ=4.42.

(a) Find a 9090% confidence interval for μμ
≤μ≤≤μ≤

(b) Find a 9595% confidence interval for μμ
≤μ≤≤μ≤

(c) Find a 9999% confidence interval for μμ
≤μ≤≤μ≤

Solutions

Expert Solution

Solution

Given that,

= 38.6

= 4.42

n = 100

a ) At 90% confidence level the z is ,

= 1 - 90% = 1 - 0.90 = 0.10

/ 2 = 0.10 / 2 = 0.05

Z/2 = Z0.05 = 1.645

Margin of error = E = Z/2* (/n)

= 1.645 * (4.42 / 100 )

= 0.7

At 90% confidence interval estimate of the population mean is,

- E < < + E

38.6 - 0.7 < < 38.6 +0.7

37.9 < < 39.3

b ) At 95% confidence level the z is ,

  = 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

Z/2 = Z0.025 = 1.960

Margin of error = E = Z/2* (/n)

= 1.960 * (4.42 / 100 )

= 0.9

At 95% confidence interval estimate of the population mean is,

- E < < + E

38.6 - 0.9 < < 38.6 +0.9

37.7 < < 39.5

c ) At 99% confidence level the z is ,

= 1 - 99% = 1 - 0.99 = 0.01

/ 2 = 0.01 / 2 = 0.005

Z/2 = Z0.005 = 2.576

Margin of error = E = Z/2* (/n)

= 2.576 * (4.42 / 100 )

= 1.1

At 99% confidence interval estimate of the population mean is,

- E < < + E

38.6 - 1.1 < < 38.6 + 1.1

37.5 < < 39.7


Related Solutions

A random sample of n = 50 observations from a quantitative population produced a mean x...
A random sample of n = 50 observations from a quantitative population produced a mean x = 2.3 and a standard deviation s = 0.34. Your research objective is to show that the population mean μ exceeds 2.2. Calculate the p-value for the test statistic z = 2.08. (Round your answer to four decimal places.) p-value =
hw18#4 A random sample of 80 observations produced a mean of x¯=21.1 from a population with...
hw18#4 A random sample of 80 observations produced a mean of x¯=21.1 from a population with a normal distribution and a standard deviation σ=4.54. (a) Find a 90% confidence interval for ?μ _____ ≤ ? ≤ ______ (b) Find a 99% confidence interval for ?μ ____ ≤ ? ≤ ______
A random sample of 120 observations produced a mean of ?⎯⎯⎯ =29.4 from a population with...
A random sample of 120 observations produced a mean of ?⎯⎯⎯ =29.4 from a population with a normal distribution and a standard deviation ?=2.45. (a) Find a 95% confidence interval for ? ___ ≤ ? ≤ ___ (b) Find a 90% confidence interval for ? ___ ≤ ? ≤ ___ (c) Find a 99% confidence interval for ?μ ___ ≤ ? ≤ ___
A random sample of 90 observations produced a mean of 32.4 from a population with a...
A random sample of 90 observations produced a mean of 32.4 from a population with a normal distribution and a standard deviation ?=2.98. (a) Find a 90% confidence interval for μ ≤?≤ (b) Find a 95% confidence interval for μ ≤?≤ (c) Find a 99% confidence interval for μ ≤?≤
A random sample of 100 observations from a quantitative population produced a sample mean of 29.8...
A random sample of 100 observations from a quantitative population produced a sample mean of 29.8 and a sample standard deviation of 7.2. Use the p-value approach to determine whether the population mean is different from 31. Explain your conclusions. (Use α = 0.05.) State the null and alternative hypotheses. (Choose Correct Letter) (a) H0: μ = 31 versus Ha: μ < 31 (b) H0: μ ≠ 31 versus Ha: μ = 31     (c) H0: μ < 31 versus Ha:...
A random sample of 130 observations produced a mean of ?⎯⎯⎯=36.1x¯=36.1 from a population with a...
A random sample of 130 observations produced a mean of ?⎯⎯⎯=36.1x¯=36.1 from a population with a normal distribution and a standard deviation σ=4.87. (a) Find a 95% confidence interval for μ ≤ μ ≤ (b) Find a 99% confidence interval for μ ≤ μ ≤ (c) Find a 90% confidence interval for μ ≤ μ ≤
A random sample of n = 1,400 observations from a binomial population produced x = 527...
A random sample of n = 1,400 observations from a binomial population produced x = 527 successes. You wish to show that p differs from 0.4. Calculate the appropriate test statistic. (Round your answer to two decimal places.) z = Calculate the p-value. (Round your answer to four decimal places.) p-value = Do the conclusions based on a fixed rejection region of |z| > 1.96 agree with those found using the p-value approach at α = 0.05? A.Yes, both approaches...
A random sample of n = 1,400 observations from a binomial population produced x = 667...
A random sample of n = 1,400 observations from a binomial population produced x = 667 successes. You wish to show that p differs from 0.5. Calculate the appropriate test statistic. (Round your answer to two decimal places.) z = Calculate the p-value. (Round your answer to four decimal places.) p-value =
A random sample of n = 500 observations from a binomial population produced x = 250...
A random sample of n = 500 observations from a binomial population produced x = 250 successes. Find a 90% confidence interval for p. (Round your answers to three decimal places.) Interpret the interval: A. In repeated sampling, 90% of all intervals constructed in this manner will enclose the population proportion. B. 90% of all values will fall within the interval. C. In repeated sampling, 10% of all intervals constructed in this manner will enclose the population proportion. D. There...
(1 point) A random sample of 100100 observations from a population with standard deviation 19.788150778587319.7881507785873 yielded...
(1 point) A random sample of 100100 observations from a population with standard deviation 19.788150778587319.7881507785873 yielded a sample mean of 93.893.8. (a)    Given that the null hypothesis is ?=90μ=90 and the alternative hypothesis is ?>90μ>90 using ?=.05α=.05, find the following: (i)    critical z/t score     equation editor Equation Editor (ii)    test statistic == (b)    Given that the null hypothesis is ?=90μ=90 and the alternative hypothesis is ?≠90μ≠90 using ?=.05α=.05, find the following: (i)    the positive critical z/t score     (ii)    the negative critical z/t score     (iii)    test statistic ==...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT