Question

In: Statistics and Probability

A random sample of n = 1,400 observations from a binomial population produced x = 527...

A random sample of n = 1,400 observations from a binomial population produced x = 527 successes. You wish to show that p differs from 0.4. Calculate the appropriate test statistic. (Round your answer to two decimal places.)

z =

Calculate the p-value. (Round your answer to four decimal places.)

p-value =

Do the conclusions based on a fixed rejection region of |z| > 1.96 agree with those found using the p-value approach at α = 0.05?

A.Yes, both approaches produce the same conclusion.

B.No, the p-value approach rejects the null hypothesis when the fixed rejection region approach fails to reject the null hypothesis.

C. No, the fixed rejection region approach rejects the null hypothesis when the p-value approach fails to reject the null hypothesis.

Should they?

Yes

No

Solutions

Expert Solution

Solution :

This is the two tailed test .

The null and alternative hypothesis is

H0 : p = 0.40

Ha : p 0.40

n = 1400

x =57

= x / n = 527/ 1400 =0.38

P0 = 0.40

1 - P0 = 1 - 0.40 =0.60

Test statistic = z

= - P0 / [P0 * (1 - P0 ) / n]

= 0.38-0.40/ [(0.40*0.60) / 1400]

= -1.80

Test statistic = z = -1.80

P-value =P(|z|>1.8)

=2*P(Z>1.8)

=2*0.035

=0.0718

P-value=0.0718

|Z|<1.96 hence we fail to reject Ho

Do the conclusions based on a fixed rejection region of |z| > 1.96 agree with those found using the p-value approach at α = 0.05?

A.Yes, both approaches produce the same conclusion.

Option A is correct

C. No, the fixed rejection region approach rejects the null hypothesis when the p-value approach fails to reject the null hypothesis.

Ans;No


Related Solutions

A random sample of n = 1,400 observations from a binomial population produced x = 667...
A random sample of n = 1,400 observations from a binomial population produced x = 667 successes. You wish to show that p differs from 0.5. Calculate the appropriate test statistic. (Round your answer to two decimal places.) z = Calculate the p-value. (Round your answer to four decimal places.) p-value =
A random sample of n = 500 observations from a binomial population produced x = 250...
A random sample of n = 500 observations from a binomial population produced x = 250 successes. Find a 90% confidence interval for p. (Round your answers to three decimal places.) Interpret the interval: A. In repeated sampling, 90% of all intervals constructed in this manner will enclose the population proportion. B. 90% of all values will fall within the interval. C. In repeated sampling, 10% of all intervals constructed in this manner will enclose the population proportion. D. There...
A random sample of n = 50 observations from a quantitative population produced a mean x...
A random sample of n = 50 observations from a quantitative population produced a mean x = 2.3 and a standard deviation s = 0.34. Your research objective is to show that the population mean μ exceeds 2.2. Calculate the p-value for the test statistic z = 2.08. (Round your answer to four decimal places.) p-value =
A random sample of 100100 observations produced a mean of x¯¯¯=38.6x¯=38.6 from a population with a...
A random sample of 100100 observations produced a mean of x¯¯¯=38.6x¯=38.6 from a population with a normal distribution and a standard deviation σ=4.42σ=4.42. (a) Find a 9090% confidence interval for μμ ≤μ≤≤μ≤ (b) Find a 9595% confidence interval for μμ ≤μ≤≤μ≤ (c) Find a 9999% confidence interval for μμ ≤μ≤≤μ≤
hw18#4 A random sample of 80 observations produced a mean of x¯=21.1 from a population with...
hw18#4 A random sample of 80 observations produced a mean of x¯=21.1 from a population with a normal distribution and a standard deviation σ=4.54. (a) Find a 90% confidence interval for ?μ _____ ≤ ? ≤ ______ (b) Find a 99% confidence interval for ?μ ____ ≤ ? ≤ ______
A random sample of 120 observations produced a mean of ?⎯⎯⎯ =29.4 from a population with...
A random sample of 120 observations produced a mean of ?⎯⎯⎯ =29.4 from a population with a normal distribution and a standard deviation ?=2.45. (a) Find a 95% confidence interval for ? ___ ≤ ? ≤ ___ (b) Find a 90% confidence interval for ? ___ ≤ ? ≤ ___ (c) Find a 99% confidence interval for ?μ ___ ≤ ? ≤ ___
A random sample of 90 observations produced a mean of 32.4 from a population with a...
A random sample of 90 observations produced a mean of 32.4 from a population with a normal distribution and a standard deviation ?=2.98. (a) Find a 90% confidence interval for μ ≤?≤ (b) Find a 95% confidence interval for μ ≤?≤ (c) Find a 99% confidence interval for μ ≤?≤
A random sample of 120 observations is selected from a binomial population with an unknown probability...
A random sample of 120 observations is selected from a binomial population with an unknown probability of success ?. The computed value of ?̂ is 0.7. (1)    Test ?0:?=0.55 against ??:?>0.55. Use ?=0.01. test statistic ?= critical ? score      (2)    Test ?0:?=0.5 against ??:?<0.5. Use ?=0.05. test statistic ?= critical ? score      (3)    Test ?0:?=0.55 against ??:?≠0.55. Use ?=0.01. test statistic ?= positive critical ? score     negative critical ? score
A random sample of 120 observations is selected from a binomial population with unknown probability of...
A random sample of 120 observations is selected from a binomial population with unknown probability of success p. The computed value of p^ is 0.69. (1)    Test H0:p≤0.6 against Ha:p>0.6. Use α=0.05. test statistic z= critical zscore      The decision is A. There is not sufficient evidence to reject the null hypothesis. B. There is sufficient evidence to reject the null hypothesis. (2)    Test H0:p≥0.6 against Ha:p<0.6. Use α=0.01 test statistic z= critical zscore      The decision is A. There is not sufficient evidence...
A random sample of 100 observations from a quantitative population produced a sample mean of 29.8...
A random sample of 100 observations from a quantitative population produced a sample mean of 29.8 and a sample standard deviation of 7.2. Use the p-value approach to determine whether the population mean is different from 31. Explain your conclusions. (Use α = 0.05.) State the null and alternative hypotheses. (Choose Correct Letter) (a) H0: μ = 31 versus Ha: μ < 31 (b) H0: μ ≠ 31 versus Ha: μ = 31     (c) H0: μ < 31 versus Ha:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT