In: Math
A random sample of 130 observations produced a mean of ?⎯⎯⎯=36.1x¯=36.1 from a population with a normal distribution and a standard deviation σ=4.87.
(a) Find a 95% confidence interval for μ
≤ μ ≤
(b) Find a 99% confidence interval for μ
≤ μ ≤
(c) Find a 90% confidence interval for μ
≤ μ ≤
Solution :
Given that,
(a)
Sample size = n = 130
Z/2 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (4.87 / 130)
= 0.8
At 95% confidence interval estimate of the population mean is,
- E + E
36.1 - 0.8 36.1 + 0.8
35.3 36.9
(b)
Sample size = n = 130
Z/2 = 2.576
Margin of error = E = Z/2* ( /n)
= 2.576 * (4.87 / 130)
= 1.1
At 99% confidence interval estimate of the population mean is,
- E + E
36.1 - 1.1 36.1 + 1.1
35.0 37.2
(c)
Sample size = n = 130
Z/2 = 1.645
Margin of error = E = Z/2* ( /n)
= 1.645 * (4.87 / 130)
= 0.7
At 90% confidence interval estimate of the population mean is,
- E + E
36.1 - 0.7 36.1 + 0.7
35.4 36.8