In: Statistics and Probability
A random sample of 120 observations produced a mean of ?⎯⎯⎯ =29.4 from a population with a normal distribution and a standard deviation ?=2.45.
(a) Find a 95% confidence interval for ?
___ ≤ ? ≤ ___
(b) Find a 90% confidence interval for ?
___ ≤ ? ≤ ___
(c) Find a 99% confidence interval for ?μ
___ ≤ ? ≤ ___
Solution :
Given that,
(a)
Sample size = n = 120
Z/2
= 1.96
Margin of error = E = Z/2*
(
/
n)
= 1.96 * (2.45 /
120)
Margin of error = E = 0.44
At 95% confidence interval estimate of the population mean is,
- E
+ E
29.4 - 0.44
29.4 + 0.44
28.96
29.84
(b)
Sample size = n = 120
Z/2
= 1.645
Margin of error = E = Z/2*
(
/
n)
= 1.645 * (2.45 /
120)
Margin of error = E = 0.37
At 90% confidence interval estimate of the population mean is,
- E
+ E
29.4 - 0.37
29.4 + 0.37
29.03
29.77
(c)
Sample size = n = 120
Z/2
= 2.576
Margin of error = E = Z/2*
(
/
n)
= 2.576 * (2.45 /
120)
Margin of error = E = 0.58
At 99% confidence interval estimate of the population mean is,
- E
+ E
29.4 - 0.58
29.4 + 0.58
28.82
29.98