Question

In: Chemistry

Using the standard values of enthalpy changes (ΔH°) and entropy change (ΔS°) to calculate the Gibbs...

Using the standard values of enthalpy changes (ΔH°) and entropy change (ΔS°) to calculate the Gibbs free energy change for the production of following metallic elements from their ore sources: (a) 2ZnO(s) 2Zn(s) + O2(g) (b) 2CaO(s) 2Ca(s) + O2(g) (c) 2Al2O3(s) 4Al(s) + 3O2(g) (d) 2MgO(s) 2Mg(s) + O2(g)

Solutions

Expert Solution

(a) 2ZnO(s) ------------>2Zn(s) + O2(g)

ΔH°rxn   = ΔH°f products - ΔH°f reactants

              = (2*0 + 0)- (2*-348.28)

               = 696.56KJ/mole

ΔS°rxn   = S°f products - S°f reactants

               = (2*41.63+ 205) - (2*43.64)

                = 200.98J/mole-K    = 0.20098KJ/mole-K

G0      = H0 - TS

                = 696.56-298*0.20098    = 636.67KJ/mole

(b) 2CaO(s) ------->2Ca(s) + O2(g)

ΔH°rxn   = ΔH°f products - ΔH°f reactants

              = (2*0 + 0)- (2*-635.09)

              = 1270.18KJ/mole

ΔS°rxn   = S°f products - S°f reactants

               = (2*41.6+ 205) - (2*39.75)

                = 208.7J/mole-K    = 0.2087KJ/mole-K

G0      = H0 - TS

                = 1270.18-298*0.2087    = 1207.98KJ/mole

(c) 2Al2O3(s) ------->4Al(s) + 3O2(g)

ΔH°rxn   = ΔH°f products - ΔH°f reactants

              = (3*0 + 4*0)- (2*-1675.7)

              = 3351.4KJ/mole

ΔS°rxn   = S°f products - S°f reactants

               = (3*205+4*28.33) - (2*50.92)

                = 626.5J/mole-K    = 0.6265KJ/mole-K

G0      = H0 - TS

                = 3351.4-298*0.6265     = 3164.7KJ/mole

(d) 2MgO(s) ------>2Mg(s) + O2(g)

ΔH°rxn   = ΔH°f products - ΔH°f reactants

              = (2*0 + 0)- (2*-601.7)

              = 1203.4KJ/mole

ΔS°rxn   = S°f products - S°f reactants

               = (2*32.68+205) - (2*26.94)

                = 216.5J/mole-K    = 0.2165KJ/mole-K

G0      = H0 - TS

                = 1203.5-298*0.2165     = 1138.98KJ/mole

(b) 2CaO(s) --------->2Ca(s) + O2(g)

(c) 2Al2O3(s)------> 4Al(s) + 3O2(g)

(d) 2MgO(s)-------> 2Mg(s) + O2(g)


Related Solutions

3.- ENTROPY EXERCISES. From the absolute entropy values calculate the standard entropy changes (ΔS °) of...
3.- ENTROPY EXERCISES. From the absolute entropy values calculate the standard entropy changes (ΔS °) of the following reactions at 25 C a.-                               CaCO3(s) →→→ CaO (s)     + CO2(g) b.-                               N2(g)   +      3H2(g)      →→→    2NH3(g) c.-                               H2(g)     +     Cl2(g)   →→→   2HCl (g) TABLE OF VALUES OF STANDARD ENTROPY (S °): COMPOUND Standard Entropy (S°):     J/ K-mol CaCO3(s) 92.9 CaO (s) 39.8 CO2(g) 213.6 N2(g)   192 H2(g)      131 NH3(g) 193 Cl2(g)   223 HCl (g) 187
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. (Assume that all reactants and products are in their standard states.) Part A ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part B ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=860K Express your answer as an integer. Part C ΔH∘rxn=84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part D ΔH∘rxn=−84kJ, ΔS∘rxn=157J/K, T=398K Express your answer as an integer.
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. (Assume that all reactants and products are in their standard states.) Part A: ΔH∘rxn=−80.kJ, ΔS∘rxn=−154J/K, T=292K Express your answer as an integer. Part B: ΔH∘rxn=−80.kJ, ΔS∘rxn=−154J/K, T=851K Express your answer as an integer. Part C: ΔH∘rxn=80.kJ, ΔS∘rxn=−154J/K, T=292K Express your answer as an integer. Part D: ΔH∘rxn=−80.kJ, ΔS∘rxn=154J/K, T=392K Express your answer as an integer.
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. ΔH∘rxn=− 132 kJ ; ΔS∘rxn= 260 J/K ; T= 310 K ΔH∘rxn= 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 310 K ΔH∘rxn=− 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 310 K ΔH∘rxn=− 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 563 K
1. Calculate the standard reaction entropy, enthalpy and Gibbs free energy for the following reactions a)...
1. Calculate the standard reaction entropy, enthalpy and Gibbs free energy for the following reactions a) N2(g) + NO2(g) ---> NO(g) + N2O(g) and b) 2F2(g) +2H2O(l) ---> 4HF(aq) + O2(g)
what is the change in entropy, enthalpy and gibbs free energy when 1 L of ideal...
what is the change in entropy, enthalpy and gibbs free energy when 1 L of ideal gas i, 3 L of ideal gas j and 4 L of ideal gas k, each at 1 atm and room temperature (298.15K) blend to form a gas mixture at the same conditions?
1. Entropy (ΔS°), Enthalpy (ΔH°) and Gibb's Free Energy (ΔG°) follow Hess's law meaning their value...
1. Entropy (ΔS°), Enthalpy (ΔH°) and Gibb's Free Energy (ΔG°) follow Hess's law meaning their value for a reaction is the sum of the products minus the sums of the reactants. Consider the following Reaction at 25.0°C Reaction 2Fe2O3(s) +3C(s) --> 4Fe(s) +3CO2(g) ΔH° (KJ/mol) -824.2 0 0 -393.5 ΔS° (J/molK) 87.4 5.74 27.23 213.6 A. Calculate ΔG° where ΔG° = ΔH° - TΔS° for this reaction ___________________________ B. If 6 electrons are transferred in the balanced redox reaction above,...
Use standard enthalpy and entropy data from Appendix G to calculate the standard free energy change...
Use standard enthalpy and entropy data from Appendix G to calculate the standard free energy change for the reaction shown here (298 K). What does the computed value for ΔG° say about the spontaneity of this process? C2 H6(g) ⟶ H2(g) + C2 H4(g)
calculate (a) the standard enthalpy, ( b) the standard Gibbs energy, of the reaction 4NO2(g) +...
calculate (a) the standard enthalpy, ( b) the standard Gibbs energy, of the reaction 4NO2(g) + O2(g) → 2N2O5(g)
Calculate the enthalpy, entropy, and Gibbs free energy of mixing when 1.00 mol hexane is mixed...
Calculate the enthalpy, entropy, and Gibbs free energy of mixing when 1.00 mol hexane is mixed with 1.00 mol heptane at 298 K. You may treat this solution as ideal. Sketch the plot of entropy of mixing vs. mole fraction, and then sketch another plot for entropy vs. mass fraction. Calculate the mass fractions of hexane and heptane that would provide the greatest entropy of mixing.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT