Question

In: Chemistry

Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...

Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. (Assume that all reactants and products are in their standard states.)

Part A: ΔH∘rxn=−80.kJ, ΔS∘rxn=−154J/K, T=292K Express your answer as an integer.

Part B: ΔH∘rxn=−80.kJ, ΔS∘rxn=−154J/K, T=851K Express your answer as an integer.

Part C: ΔH∘rxn=80.kJ, ΔS∘rxn=−154J/K, T=292K Express your answer as an integer.

Part D: ΔH∘rxn=−80.kJ, ΔS∘rxn=154J/K, T=392K Express your answer as an integer.

Solutions

Expert Solution

The formula to calculate change in Gibbs free energy G⁰ is given by G⁰ = H - TS⁰

But one thing that we have to keep in mind is to match the units like we have to put all the values in J or KJ to make the calculation easy and to get the precise answer because if we don't do so we can get wrong answers.

We can also tell if the reaction is spontaneous or non spontaneous by knowing the value of gibbs free energy. If its value comes out to be negative then the reaction is spontaneous and if its positive the the reaction is non spontaneous but it its value is 0 then the reaction is in equilibrium.

Part A

Since change in entropy is in J/K, let's convert change in enthalpy in J too

1 KJ = 1000 J, -80 kJ = -80,000 J

G⁰ = -80,000 - (292 × -154) = -80,000 - (-44968) = -80,000 + 44,968 = -35,032 J

If we want to write it in kJ, we'd have to simply divide it by 1000 which would give

G⁰ = -35.032 kJ

The value of gibbs energy is negative. Therefore, the reaction is spontaneous.

Part B :- similar to Part A

G⁰ = - 80,000 - (851 × -154) = -80,000 + 131,054 = 51,054

G⁰ = 51.054 kJ

The value is positive, so the reaction is non spontaneous

Part C :-

G⁰ = 80,000 - (292 × -154) = 80,000 + 44,968 = 124968 J

G⁰ = 124.968 kJ

Part D :-

G⁰ = -80,000 - (392 × 154) = -80,000 - 60, 368 = - 140,368 J

G⁰ = -140.36 kJ

Tge value is, so the reaction is spontaneous.

Please like the answer if it helped. I need that. Thank you.:)


Related Solutions

Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. (Assume that all reactants and products are in their standard states.) Part A ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part B ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=860K Express your answer as an integer. Part C ΔH∘rxn=84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part D ΔH∘rxn=−84kJ, ΔS∘rxn=157J/K, T=398K Express your answer as an integer.
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. ΔH∘rxn=− 132 kJ ; ΔS∘rxn= 260 J/K ; T= 310 K ΔH∘rxn= 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 310 K ΔH∘rxn=− 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 310 K ΔH∘rxn=− 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 563 K
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C?2CH4(g)→C2H6(g)+H2(g), Calculate ΔS∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) Calculate ΔS∘rxn at 25 ∘C. 2KClO3(s)→2KCl(s)+3O2(g) Calculate ΔS∘rxn at 25 ∘C.
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C? a) 2CH4(g)→C2H6(g)+H2(g) b) 2NH3(g)→N2H4(g)+H2(g) c) N2(g)+O2(g)→2NO(g) d) 2KClO3(s)→2KCl(s)+3O2(g) Can you please show equations. I am having so much trouble with these.
Using the standard values of enthalpy changes (ΔH°) and entropy change (ΔS°) to calculate the Gibbs...
Using the standard values of enthalpy changes (ΔH°) and entropy change (ΔS°) to calculate the Gibbs free energy change for the production of following metallic elements from their ore sources: (a) 2ZnO(s) 2Zn(s) + O2(g) (b) 2CaO(s) 2Ca(s) + O2(g) (c) 2Al2O3(s) 4Al(s) + 3O2(g) (d) 2MgO(s) 2Mg(s) + O2(g)
Given the values of ΔH∘rxn, ΔS∘rxn, and Tbelow, determine ΔSuniv. A. ΔH∘rxn=− 118 kJ , ΔS∘rxn=...
Given the values of ΔH∘rxn, ΔS∘rxn, and Tbelow, determine ΔSuniv. A. ΔH∘rxn=− 118 kJ , ΔS∘rxn= 258 J/K , T= 294 K B. ΔH∘rxn= 118 kJ , ΔS∘rxn=− 258 J/K , T= 294 K C. ΔH∘rxn=− 118 kJ , ΔS∘rxn=− 258 J/K , T= 294 K . D. ΔH∘rxn=− 118 kJ , ΔS∘rxn=− 258 J/K , T= 545 K . Predict whether or not the reaction in part A will be spontaneous. Predict whether or not the reaction in part...
Using the given data, calculate the change in Gibbs free energy for each of the following...
Using the given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298 K under standard conditions. Part A: 2Ag (s) + Cl2 (g) --> 2AgCl (s) Gibbs free energy for AgCl (s) is -109.70 kJ/mol Part B: spontaneous or nonspontaneous Part C: P4O10 (s) + 16H2 (g) --> 4PH3 (g) + 10H2O (g) Gibbs free energy for P4O10 (s) is -2675.2 kJ/mol Gibbs free...
Given the values of ΔH∘rxn , ΔS∘rxn , and T below, determine ΔSuniv . a) ΔH∘rxn=...
Given the values of ΔH∘rxn , ΔS∘rxn , and T below, determine ΔSuniv . a) ΔH∘rxn= 87 kJ , ΔSrxn= 146 J/K , T= 296 K Will this be spontaneous or not spontaneous? b) ΔH∘rxn= 87 kJ , ΔSrxn= 146 J/K , T= 762 K   Will this be spontaeous or not spontaneous? c) ΔH∘rxn= 87 kJ , ΔSrxn=− 146 J/K , T= 296 K   will this be spontaneous or not spontaneous? d) ΔH∘rxn=− 87 kJ , ΔSrxn= 146 J/K ,...
Given the values of ΔH∘rxn, ΔS∘rxn, and T below, determine ΔSuniv. Predict whether or not each...
Given the values of ΔH∘rxn, ΔS∘rxn, and T below, determine ΔSuniv. Predict whether or not each reaction will be spontaneous. ΔH∘rxn=− 118 kJ , ΔS∘rxn= 261 J/K , T= 294 K ΔSuniv = ??? (J/K) ΔH∘rxn= 118 kJ , ΔS∘rxn=− 261 J/K , T= 294 K . ΔSuniv = ??? (J/K) ΔH∘rxn=− 118 kJ , ΔS∘rxn=− 261 J/K , T= 294 K . ΔSuniv = ??? (J/K) ΔH∘rxn=− 118 kJ , ΔS∘rxn=− 261 J/K , T= 565 K . ΔSuniv...
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C....
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. KBr(s)↽−−⇀K+(aq)+Br−(aq) ΔGrxn°=    ?    kJ/mol Determine the concentration of K+(aq) if the change in Gibbs free energy, nΔGrxn, for the reaction is −8.95 kJ/mol. [K+] =    ? M
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT