Question

In: Statistics and Probability

Find the​ 95% z-interval or​ t-interval for the indicated parameter. ​(a) μ     x̄=138​, s=38​, n=35 ​(b) p...

Find the​ 95% z-interval or​ t-interval for the indicated parameter.

​(a) μ     x̄=138​, s=38​, n=35

​(b) p p̂=0.7​, n=73x

​(a) The​ 95% confidence interval for μ is ___ to ____. ​(Round to two decimal places as​ needed.)

Solutions

Expert Solution

Dear student , please like it.

Thanks.


Related Solutions

Find the interval [ μ−z σn√,μ+z σn√μ−z⁢ σn,μ+z⁢ σn ] within which 95 percent of the...
Find the interval [ μ−z σn√,μ+z σn√μ−z⁢ σn,μ+z⁢ σn ] within which 95 percent of the sample means would be expected to fall, assuming that each sample is from a normal population. (a) μ = 179, σ = 10, n = 33. (Round your answers to 2 decimal places.)    The 95% range is from   to  . (b) μ = 867, σ = 18, n = 10. (Round your answers to 2 decimal places.)    The 95% range is from   to  . (c) μ...
If n=35, t=2.07, what is the p-value? If z = -1, what is P(z > -1)?...
If n=35, t=2.07, what is the p-value? If z = -1, what is P(z > -1)? If z = -1, what is P(z < -1)? If x = 30 and n = 200, what is the proportion?
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z <...
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z < -1.54 or Z > 1.54)
Find the probability of each of the following, if Z~N(μ = 0,σ = 1). a) P(Z...
Find the probability of each of the following, if Z~N(μ = 0,σ = 1). a) P(Z < -1.88) b) P(Z > 1.51) = c) P(-0.61 < Z < 1.54) = d) P(| Z | >1.78) = e)  P(Z < -1.27) = f) P(Z > 1.02) = g) P(-0.69 < Z < 1.78) = h) P(| Z | >1.86) =
Consider the following hypotheses: H0: μ = 38 HA: μ ≠ 38 Find the p-value for...
Consider the following hypotheses: H0: μ = 38 HA: μ ≠ 38 Find the p-value for this test based on the following sample information. a. x¯x¯ = 33; s = 11.9; n = 38 0.05 p-value < 0.10 0.02 p-value < 0.05 0.01 p-value < 0.02 p-value < 0.01 p-value 0.10 b. x¯x¯ = 43; s = 11.9; n = 38 0.01 p-value < 0.02 p-value < 0.01 p-value 0.10 0.05 p-value < 0.10 0.02 p-value < 0.05 c. x¯x¯...
please be very specific on showing work done!! If Z∼N(μ=0,σ2=1)Z∼N(μ=0,σ2=1), find the following probabilities: P(Z<1.58)=P(Z<1.58)= P(Z=1.58)=P(Z=1.58)=...
please be very specific on showing work done!! If Z∼N(μ=0,σ2=1)Z∼N(μ=0,σ2=1), find the following probabilities: P(Z<1.58)=P(Z<1.58)= P(Z=1.58)=P(Z=1.58)= P(Z>−.27)=P(Z>−.27)= P(−1.97<Z<2.46)=
           NIM Coef. Std. Err. z P>z       [95% Conf.   Interval]           ...
           NIM Coef. Std. Err. z P>z       [95% Conf.   Interval]            size -.0034886 .0009923 -3.52 0.000       -.0054334   -.0015437 CapitalRatio .0135466 .0070876 1.91 0.056       -.0003449   .027438 LoanRatio .0045599 .0084585 0.54 0.590       -.0120185   .0211382 DEP .0174113 .0085273 2.04 0.041       .0006981   .0341244 LLP -.0769467 .0217821 -3.53 0.000       -.1196388   -.0342547 _cons .0892742 .0232513 3.84 0.000       .0437024   .1348459            sigma_u .00575965 sigma_e .00718292 rho .3913461 (fraction of variance due   to   u_i)   ...
Consider a two-sided confidence interval for the mean μ when σ is known; X̄-Zα1 σ/√n ≤...
Consider a two-sided confidence interval for the mean μ when σ is known; X̄-Zα1 σ/√n ≤ μ ≤ X̄+Zα2 σ/√n where α1 + α2 = α. if α1= α2 = α/2, we have the usual 100(1-α)% confidence interval for μ. In the above, when α1 ≠ α2 , the interval is not symmetric about μ. Prove that the length of the interval L is minimized when α1= α2= α/2. Hint remember that Φ Zα = (1- α) , so Φ-1...
(a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25 (a)...
(a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25 (a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25<Z<0.37). (d) find z such that P[Z>z]=0.05. (e) find z such that P[-z<Z<z]=0.99. (f) find the value of k such that P[k<Z<-0.18]=0.4197
Construct the confidence interval for the population mean μ. c= 0.98, x̄=6.6, σ=0.7, n=41 A 98...
Construct the confidence interval for the population mean μ. c= 0.98, x̄=6.6, σ=0.7, n=41 A 98 % confidence interval for μ is ( _ , _ ) Round two decimal places as needed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT