In: Statistics and Probability
As part of a study on stress and its effects on aging, researchers measured telomere length in blood cells of healthy premenopausal women with chronically ill children.
Here is a link to the data.
Question: What is the correlation coefficient for these variables? Calculate your answer using the function =correl(array 1, array2) in microsoft excel. Answer to three decimal places.
1 | 1.63 |
1 | 1.24 |
1 | 1.33 |
2 | 1.5 |
2 | 1.42 |
2 | 1.36 |
2 | 1.32 |
3 | 1.47 |
2 | 1.24 |
4 | 1.51 |
4 | 1.31 |
5 | 1.36 |
5 | 1.34 |
5 | 1.57 |
4 | 1.03 |
4 | 0.84 |
5 | 0.94 |
5 | 1.03 |
5 | 1.14 |
6 | 1.17 |
6 | 1.23 |
6 | 1.25 |
6 | 1.31 |
6 | 1.34 |
7 | 1.36 |
6 | 1.22 |
8 | 1.32 |
8 | 1.28 |
8 | 1.26 |
7 | 1.18 |
7 | 1.03 |
8 | 1.1 |
8 | 1.13 |
8 | 0.98 |
10 | 0.85 |
10 | 1.05 |
12 | 1.15 |
12 | 1.14 |
12 | 1.56 |
B. Based on your calculated correlation coefficient, how would you describe the correlation between the length of telomeres and and the number of years healthy pre-menopausall woman cared for chronically ill children?
strong negative |
||||||||||||||
weak negative |
||||||||||||||
weak positive |
||||||||||||||
strong positive |
||||||||||||||
no correlation C. Based on the correlation between telomere and caring for chronically ill children, how would you expect stress to impact aging?
|
A.
X | Y |
X-Mx |
Y-My | (X-Mx)^2 | (Y-My)^2 | (X-Mx)(Y-My) |
1 | 1.63 | -4.718 | 0.387 | 22.259 | 0.15 | -1.824 |
1 | 1.24 | -4.718 | -0.003 | 22.259 | 0 | 0.016 |
1 | 1.33 | -4.718 | 0.087 | 22.259 | 0.008 | -0.409 |
2 | 1.5 | -3.718 | 0.257 | 13.823 | 0.066 | -0.954 |
2 | 1.42 | -3.718 | 0.177 | 13.823 | 0.031 | -0.657 |
2 | 1.36 | -3.718 | 0.117 | 13.823 | 0.014 | -0.434 |
2 | 1.32 | -3.718 | 0.077 | 13.823 | 0.006 | -0.285 |
3 | 1.47 | -2.718 | 0.227 | 7.387 | 0.051 | -0.616 |
2 | 1.24 | -3.718 | -0.003 | 13.823 | 0 | 0.012 |
4 | 1.51 | -1.718 | 0.267 | 2.951 | 0.071 | -0.458 |
4 | 1.31 | -1.718 | 0.067 | 2.951 | 0.004 | -0.115 |
5 | 1.36 | -0.718 | 0.117 | 0.515 | 0.014 | -0.084 |
5 | 1.34 | -0.718 | 0.097 | 0.515 | 0.009 | -0.069 |
5 | 1.57 | -0.718 | 0.327 | 0.515 | 0.107 | -0.235 |
4 | 1.03 | -1.718 | -0.213 | 2.951 | 0.046 | 0.366 |
4 | 0.84 | -1.718 | -0.403 | 2.951 | 0.163 | 0.693 |
5 | 0.94 | -0.718 | -0.303 | 0.515 | 0.092 | 0.218 |
5 | 1.03 | -0.718 | -0.213 | 0.515 | 0.046 | 0.153 |
5 | 1.14 | -0.718 | -0.103 | 0.515 | 0.011 | 0.074 |
6 | 1.17 | 0.282 | -0.073 | 0.08 | 0.005 | -0.021 |
6 | 1.23 | 0.282 | -0.013 | 0.08 | 0 | -0.004 |
6 | 1.25 | 0.282 | 0.007 | 0.08 | 0 | 0.002 |
6 | 1.31 | 0.282 | 0.067 | 0.08 | 0.004 | 0.019 |
6 | 1.34 | 0.282 | 0.097 | 0.08 | 0.009 | 0.027 |
7 | 1.36 | 1.282 | 0.117 | 1.644 | 0.014 | 0.15 |
6 | 1.22 | 0.282 | -0.023 | 0.08 | 0.001 | -0.007 |
8 | 1.32 | 2.282 | 0.077 | 5.208 | 0.006 | 0.175 |
8 | 1.28 | 2.282 | 0.037 | 5.208 | 0.001 | 0.084 |
8 | 1.26 | 2.282 | 0.017 | 5.208 | 0 | 0.038 |
7 | 1.18 | 1.282 | -0.063 | 1.644 | 0.004 | -0.081 |
7 | 1.03 | 1.282 | -0.213 | 1.644 | 0.046 | -0.274 |
8 | 1.1 | 2.282 | -0.143 | 5.208 | 0.021 | -0.327 |
8 | 1.13 | 2.282 | -0.113 | 5.208 | 0.013 | -0.259 |
8 | 0.98 | 2.282 | -0.263 | 5.208 | 0.069 | -0.601 |
10 | 0.85 | 4.282 | -0.393 | 18.336 | 0.155 | -1.684 |
10 | 1.05 | 4.282 | -0.193 | 18.336 | 0.037 | -0.828 |
12 | 1.15 | 6.282 | -0.093 | 39.464 | 0.009 | -0.586 |
12 | 1.14 | 6.282 | -0.103 | 39.464 | 0.011 | -0.649 |
12 | 1.56 | 6.282 | 0.317 | 39.464 | 0.1 | 1.989 |
Mx: 5.718 | My: 1.243 | Sum: 349.897 | Sum: 1.392 | Sum: -7.443 |
X Values
∑ = 223
Mean = 5.718
∑(X - Mx)2 = SSx = 349.897
Y Values
∑ = 48.49
Mean = 1.243
∑(Y - My)2 = SSy = 1.392
X and Y Combined
N = 39
∑(X - Mx)(Y - My) = -7.443
R Calculation
r = ∑((X - My)(Y - Mx)) /
√((SSx)(SSy))
r = -7.443 / √((349.897)(1.392)) = -0.3373
B. As r is negative and less than 0.50, so it is weak and
negatively correlated
So answer is weak negative
C. Increased stress decreases the rate of aging, as seen by shorter telomeres.