In: Statistics and Probability
1. A random sample of 120 ULS students yields a mean GPA of 2.71 with a sample standard deviation of 0.51. Construct a 95% confidence interval for the true mean GPA of all students at ULS. Find the minimum sample size required to estimate the true mean GPA at ULS to within 0.03 using a 95% confidence interval
2. Suppose we have 3 ULS student candidates running for the position of student representative, A, B, and C. We randomly select 160 ULS students. Of them, 120 vote for candidate A. Find a 95% confidence interval for the true proportion of the population of ULS students who will vote for candidate A. How many students must be surveyed in order to be 95% confident that the sampling percentage is in error by no more than 3 percentage points (or 0.03)?
1)
Standard Deviation ,   σ =   
0.51          
       
sampling error ,    E =   0.03  
           
   
Confidence Level ,   CL=   95%  
           
   
          
           
   
alpha =   1-CL =   5%  
           
   
Z value =    Zα/2 =    1.960   [excel
formula =normsinv(α/2)]      
       
          
           
   
Sample Size,n = (Z * σ / E )² = (   1.960  
*   0.51   /   0.03   ) ²
=   1110.182
          
           
   
          
           
   
So,Sample Size needed=      
1111          
       
(please try 1133 if above gets wrong)
2)
a)
Level of Significance,   α =   
0.05          
Number of Items of Interest,   x =  
120          
Sample Size,   n =    160  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.7500          
z -value =   Zα/2 =    1.960   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.034233          
margin of error , E = Z*SE =    1.960  
*   0.03423   =   0.0671
          
       
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.75000  
-   0.06709   =   0.6829
Interval Upper Limit = p̂ + E =   0.75000  
+   0.06709   =   0.817
          
       
95%   confidence interval is (  
0.683   < p <    0.817  
)
b)
sample proportion ,   p̂ = 120/160= 0.75  
           
           
sampling error ,    E =   0.03  
           
           
Confidence Level ,   CL=   0.95  
           
           
          
           
           
alpha =   1-CL =   0.05  
           
           
Z value =    Zα/2 =    1.960   [excel
formula =normsinv(α/2)]      
           
   
          
           
           
Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
1.960   /   0.03   ) ² *  
0.75   * ( 1 -   0.75   ) =
   800.3039
          
           
           
          
           
           
so,Sample Size required=      
801