In: Statistics and Probability
A random sample of 40 students taken from a university showed that their mean GPA is 2.94 and the standard deviation of their GPAs is .30. Construct a 99% confidence interval for the mean GPA of all students at this university
Solution :
Given that,
Point estimate = sample mean =
= 2.94
Population standard deviation =
= 0.30
Sample size = n =40
At 99% confidence level the z is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
Z/2 = Z0.005 = 2.576 ( Using z table )
Margin of error = E = Z/2* ( /n)
= 2.576* ( 0.30/ 40)
= 0.1222
At 99% confidence interval estimate of the population mean is,
- E < < + E
2.94-0.1222 < <2.94+ 0.1222
2.8178< < 3.0622
(2.8178,3.0622)