Question

In: Chemistry

Carbonyl bromide, COBr2, decomposes to CO and Br2 with and equilibrium constant of Kc of 0.190...

Carbonyl bromide, COBr2, decomposes to CO and Br2 with and equilibrium constant of Kc of 0.190 at 73C.
COBr2(g) <--> CO (g) + Br2 (g)
if 0.015 mol COBr2 is in a 2.50 L flask at equilibrium, what are the concentrations of CO and Br2 at equilibrium?

Solutions

Expert Solution

ans)              COBr2                         CO            +         Br2

                  given       0.015 /2.5                            0                     0

                                       = 0.006M                            0                    0

              at eqm conc        0.006 - x                               x                     x

                                              Kc   = [ CO ]   [ Br2 ] / [ COBr2 ]

                                           0.190    =     x2 / 0.006 -x

                                           by solving      x = 0.03376 M

                                    [ CO ] =X = 0.03376M

                            [Br2 ] = X = 0.03376M

                                   THANK U


Related Solutions

Consider the equilibrium between COBr2, CO and Br2. COBr2(g) <-->CO(g) + Br2(g) K = 2.08 at...
Consider the equilibrium between COBr2, CO and Br2. COBr2(g) <-->CO(g) + Br2(g) K = 2.08 at 382 K The reaction is allowed to reach equilibrium in a 14.6-L flask. At equilibrium, [COBr2] = 4.50×10-2 M, [CO] = 0.306 M and [Br2] = 0.306 M. (a) The equilibrium mixture is transferred to a 7.30-L flask. In which direction will the reaction proceed to reach equilibrium? right or left (b) Calculate the new equilibrium concentrations that result when the equilibrium mixture is...
The equilibrium constant Kc for the reaction below is 0.00427 at a certain temperature. Br2(g) ⇌...
The equilibrium constant Kc for the reaction below is 0.00427 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0844 M and [Br] = 0.0763 M, calculate the concentrations of these species at equilibrium.
A proposed mechanism for the preparation of COBr2 from CO(g) and Br2 is: Br2 ⇄ 2...
A proposed mechanism for the preparation of COBr2 from CO(g) and Br2 is: Br2 ⇄ 2 Br (g) fast Br(g) + CO (g) ⇄ COBr fast COBr + Br2 → COBr2 + Br slow The correct rate law for this mechanism is: A. k [CO][Br2] B. k [CO] / [Br2]1/2 C. k[Br2] D. k [CO]2[Br2] E. k [CO][Br2]3/2
Be sure to answer all parts. At 1280°C the equilibrium constant Kc for the reaction Br2(g)...
Be sure to answer all parts. At 1280°C the equilibrium constant Kc for the reaction Br2(g) ⇌ 2Br(g) is 1.1 ×10−3. If the initial concentrations are [Br2] = 0.0320 M and [Br] = 0.0290 M, calculate the concentrations of these two species at equilibrium. [Br2]eq = [Br]eq =
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106...
8. The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇌ 2 HBr(g) is 2.18×106 at 730°C. Starting 3.20 moles of HBr in a 12.0-L reaction vessel, calculate the concentrations of H2, Br2, and HBr at equilibrium. the answer is [H2] = [Br2] = 1.81×10-4 M [HBr] = 0.267 M but how and why?
Given the following reactions: COBr2 (g) --------------- > CO (g) + Br2 (g)              K = .190...
Given the following reactions: COBr2 (g) --------------- > CO (g) + Br2 (g)              K = .190 at 73 °C 2 BrCl (g) ------------ > Br2 (g) + Cl2 (g)          K = 310 at 73 °C (estimated) Find the equilibrium constant at 73 °C for: CO + BrCl ------- > COBr2 + Cl2
The equilibrium constant, Kc, for the following reaction is 6.50×10-3 at 298K. 2NOBr(g)<====> 2NO(g) + Br2(g)...
The equilibrium constant, Kc, for the following reaction is 6.50×10-3 at 298K. 2NOBr(g)<====> 2NO(g) + Br2(g) If an equilibrium mixture of the three gases in a 16.4 L container at 298K contains 0.383 mol of NOBr(g) and 0.230 mol of NO, the equilibrium concentration of Br2 is____M The equilibrium constant, Kc , for the following reaction is 7.00×10-5 at 673 K. NH4I(s) <====>NH3(g) + HI(g) If an equilibrium mixture of the three compounds in a 5.04 L container at 673...
Consider the following reaction and its equilibrium constant: I2(g) + Br2(g) 2 IBr(g) Kc = 1.1...
Consider the following reaction and its equilibrium constant: I2(g) + Br2(g) 2 IBr(g) Kc = 1.1 × 102 This reaction mixture contains initially 0.41 M I2 and 0.27 M Br2. Calculate the equilibrium concentration of I2, Br2, and IBr? Please help with this, Can I find a example similar to this anywhere. I can't figure out some of the parts of this problem.
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium concentrations of reactant and products when 0.576 moles of CO and 0.576 moles of Cl2 are introduced into a 1.00 L vessel at 600 K. [CO] = M [Cl2] = M [COCl2] = M
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant Kc. 3A...
At a certain temperature, this reaction establishes an equilibrium with the given equilibrium constant Kc. 3A + 2B -><- 4C kc=1.33x10^27 If at this temperature, 2.00 mol of A and 3.80 mol of B are placed in a 1.00L container, what are the concentrations of A, B, C at equilibrium?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT