Question

In: Statistics and Probability

Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (...

Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (

a) Compute the cdf of Y := min(X1, . . . , Xn).

(b) Use (a) to compute the pdf of Y .

(c) Find E(Y ).

Solutions

Expert Solution

The cdf of the random variable X denoted by is given by

(a)

Y=min(X1,X2,...,Xn)

The cdf of Y is given by

(b)

The pdf fY(y) is obtained from (a) as:

(c)

The expectation of Y is given by

[n+1>0]

Hopefully this will help you. In case of any query, do comment. If you are satisfied with the answer, give it a like. Thanks


Related Solutions

6.42 Let X1,..., Xn be an i.i.d. sequence of Uniform (0,1) random variables. Let M =...
6.42 Let X1,..., Xn be an i.i.d. sequence of Uniform (0,1) random variables. Let M = max(X1,...,Xn). (a) Find the density function of M. (b) Find E[M] and V[M].
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A)...
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A) Using the convolution formula, find the pdf ??(?) of the random variable ?=?+?, and graph it. B) What is the moment generating function of ??
Let X1 and X2 be independent UNIF(0,1) random variables and consider the transformations Y1= X1X2 and...
Let X1 and X2 be independent UNIF(0,1) random variables and consider the transformations Y1= X1X2 and Y2 =X1/X2. Find the joint pdf of Y1 and Y2 and indicate their joint support of Y1 and Y2. Show Work.
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to...
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to be the smallest k such that X1+X2+⋯+Xn exceeds cn=n2+12n−−√, namely, Nn = min{k≥1:X1+X2+⋯+Xk>ck} Does the limit limn→∞P(Nn>n) exist? If yes, enter its numerical value. If not, enter −999. unanswered Submit You have used 1 of 3 attempts Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with pdf f(x; θ1, θ2) = 1/(2θ2), θ1 − θ2 < x < θ1 + θ2, where −∞ < θ1 < ∞ and θ2 > 0, and the pdf is equal to zero elsewhere. (a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint sufficient statistics for θ1 and θ2, are complete. (b) Find the MVUEs of θ1 and θ2.
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
X1, X2, and X3are independent random variables with a uniform (Beta - 1, Beta + 1)...
X1, X2, and X3are independent random variables with a uniform (Beta - 1, Beta + 1) distribution. The distribution is fx(x) = 1/2 for Beta - 1 < x < Beta + 1 Beta(hat) = (X1 + X2 + X3)/3 Find the expected value and variance of beta(hat).
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on...
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on the unit interval). Let M be the middle value among the 101 numbers, with 50 values less than M and 50 values greater than M. (a). Find the approximate value of P( M < 0.45 ). (b). Find the approximate value of P( | M- 0.5 | < 0.001 ), the probability that M is within 0.001 of 1/2.
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean...
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean µ 1. Find the maximum likelihood estimator of µ 2.Determine whether the maximum likelihood estimator is unbiased for µ
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT