Question

In: Math

Let X and Y be uniform random variables on [0, 1]. If X and Y are...

Let X and Y be uniform random variables on [0, 1]. If X and Y are independent, find the probability distribution function of X + Y

Solutions

Expert Solution


Related Solutions

Let X, Y be independent random variables with X ∼ Uniform([1, 5]) and Y ∼ Uniform([2,...
Let X, Y be independent random variables with X ∼ Uniform([1, 5]) and Y ∼ Uniform([2, 4]). a) FindP(X<Y). b) FindP(X<Y|Y>3) c) FindP(√Y<X<Y).
Let X and Y be random variables. Suppose P(X = 0, Y = 0) = .1,...
Let X and Y be random variables. Suppose P(X = 0, Y = 0) = .1, P(X = 1, Y = 0) = .3, P(X = 2, Y = 0) = .2 P(X = 0, Y = 1) = .2, P(X = 1, Y = 1) = .2, P(X = 2, Y = 1) = 0. a. Determine E(X) and E(Y ). b. Find Cov(X, Y ) c. Find Cov(2X + 3Y, Y ).
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to...
Let X and Y be random variable follow uniform U[0, 1]. Let Z = X to the power of Y. What is the distribution of Z?
2. Let X be a uniform random variable over the interval (0, 1). Let Y =...
2. Let X be a uniform random variable over the interval (0, 1). Let Y = X(1-X). a. Derive the pdf for Y . b. Check the pdf you found in (a) is a pdf. c. Use the pdf you found in (a) to find the mean of Y . d. Compute the mean of Y by using the distribution for X. e. Use the pdf of Y to evaluate P(|x-1/2|<1/8). You cannot use the pdf for X. f. Use...
Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X,...
Let X,,X, and X, be independent uniform random variables on [0,1] Write Y = X, +X, and Z = X+ X. a.) Compute E[X,X,X,. (5 points) b.) Compute Var(X). (5 points) c.) Compute and draw a graph of the density function fr. (15 points)
Let X and Y be independent discrete random variables with the following PDFs: x 0 1...
Let X and Y be independent discrete random variables with the following PDFs: x 0 1 2 f(x)=P[X=x] 0.5 0.3 0.2 y 0 1 2 g(y)= P[Y=y] 0.65 0.25 0.1 (a) Show work to find the PDF h(w) = P[W=w] = (f*g)(w) (the convolution) of W = X + Y (b) Show work to find E[X], E[Y] and E[W] (note that E[W] = E[X]+E[Y])
1. Let X and Y be independent U[0, 1] random variables, so that the point (X,...
1. Let X and Y be independent U[0, 1] random variables, so that the point (X, Y) is uniformly distributed in the unit square. Let T = X + Y. (a) Find P( 2Y < X ). (b). Find the CDF F(t) of T (for all real numbers t). HINT: For any number t, F(t) = P ( X <= t) is just the area of a part of the unit square. (c). Find the density f(t). REMARK: For a...
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the...
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the cumulative distribution and probability density function of Z = X + Y.
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the...
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the expected value E(XY ). b) What is the probability density function fZ(z) of Z = XY ? Hint: First compute the cumulative distribution function FZ(z) = P(Z ≤ z) using a double integral, and then differentiate in z. c) Use your answer to b) to compute E(Z). Compare it with your answer to a).
Let X and Y be independent and identical uniform distribution on [0, 1]. Let Z=min(X, Y)....
Let X and Y be independent and identical uniform distribution on [0, 1]. Let Z=min(X, Y). Find E[Y-Z]. Hint: condition on whether Y=Z or not. What is the probability Y=Z?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT