In: Statistics and Probability
3)A random variable X~N(0,1). Find the value of q from the Normal Table such that P(X≤q)=0.2624. (Round the result to 2 decimal places.)
4) A random variable X~N(0.11,0. 682 ). Find the probability P(X≤-0.98). (Round the result to 2 decimal places.)
5) A random variable T has t-distribution with degree of freedom 23. Find the t such that P(T≥t)=0.15. (Round the result to 4 decimal places.)
Solution
a ) Given that
Using standard normal table,
P ( X q ) = 0.2624
p ( X -0.636 ) = 0.2624
q = - 0.64
4 ) Given that,
mean = = 0.11
standard deviation = = 0.682
p ( X -0.98 )
P ( X - /) (-0.98 - 0.11 / 0.682)
P( z -1.09 / 0.682 )
P ( z -1.60 )
Using z table
= 0.0548
Probability = 0.0548
5 ) Given that ,
Using t table
df = 23
P ( T > t ) = 0.15
1 - P ( T < t0 ) = 0.15
P ( T < t ) = 1 - 0.15
P ( t < 1.0603 ) = 0.85
t = 1.0603