Question

In: Statistics and Probability

4. a. Suppose Z~Normal(0,1). Find P(1<Z<2). (3pts) b. Suppose X~Normal(-2,1). Find P(X>0 or X<-3). (3pts) c....

4.

a. Suppose Z~Normal(0,1). Find P(1<Z<2). (3pts)

b. Suppose X~Normal(-2,1). Find P(X>0 or X<-3). (3pts)

c. Suppose X~Normal(2,4). The middle 88% of the X values are between what two values? (3pts)

Solutions

Expert Solution

Refer Standard normal table/Z-table to find the probability or use excel formula "=NORM.S.DIST(2, TRUE)" & "=NORM.S.DIST(1, TRUE)" to find the probability.

----------------------------------------------------------------------------------------------------------------

Refer Standard normal table/Z-table to find the probability or use excel formula "=NORM.S.DIST(2, TRUE)" & "=NORM.S.DIST(-1, TRUE)" to find the probability.

----------------------------------------------------------------------------------------------------------------

Refer Standard normal table/Z-table, Lookup for z-score corresponding to area 0.94 to the left of the normal curve or use excel formula "=NORM.S.INV(0.94)" to find the z-score.


Related Solutions

x 0 1 2 3 4 P(X) .45 .3 .2 .04 .01 (c) Find the probability...
x 0 1 2 3 4 P(X) .45 .3 .2 .04 .01 (c) Find the probability that a person has 1 sibling given that they have less than 3 siblings. Hint: Use the conditional formula: P(A|B)=P(A and B)/P(B). In this case A: event of having 1 sibling and B: event of having less than 3 siblings. (d) Find the probability that a person has at least 1 sibling OR less than 2 siblings. Hint: Use the General Addition Rule: P(A...
Suppose f(x,y)=(1/8)(6-x-y) for 0<x<2 and 2<y<4. a. Find p(Y<3|X=1) b. Find p(Y<3|0.5<X<1)
Suppose f(x,y)=(1/8)(6-x-y) for 0<x<2 and 2<y<4. a. Find p(Y<3|X=1) b. Find p(Y<3|0.5<X<1)
6.8 For normal(0,1), find a number z ∗ solving P(−z ∗ ≤ Z ≤ z ∗...
6.8 For normal(0,1), find a number z ∗ solving P(−z ∗ ≤ Z ≤ z ∗ ) = .05 (use qnorm and symmetry).R coding 6.10 Make a histogram of 100 exponential numbers with mean 10. Estimate the median. Is it more or less than the mean?
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257...
For a standard normal distribution, find 1. P(z > c)=0.3796 Find c. 2. P(z < c)=0.0257 Find c. 3. P(-2.68< z > -0.38) 4. P(z > -1.55) 5. P(z < -0.32)
Find the following probabilities for two normal random variablesZ=N(0,1) andX=N(−1,9). (a)P(Z >−1.48). (b)P(|X|<2.30). (c) What is...
Find the following probabilities for two normal random variablesZ=N(0,1) andX=N(−1,9). (a)P(Z >−1.48). (b)P(|X|<2.30). (c) What is the type and the parameters of the random variableY= 3X+ 5?
1. If Z is a standard normal random variable, find c such that P(−c ≤ Z...
1. If Z is a standard normal random variable, find c such that P(−c ≤ Z ≤ c) = 0.82. [Answer to 2 decimal places] 2. Weakly earnings on a certain import venture are approximately normally distributed with a known mean of $353 and unknown standard deviation. If the proportion of earnings over $386 is 25%, find the standard deviation. Answer only up to two digits after decimal. 3. X is a normal random variable with mean μ and standard...
Find the volume of D= {(x,y,z): x^2+y^2+z^2<_ 4, x _>0, y_>0
Find the volume of D= {(x,y,z): x^2+y^2+z^2<_ 4, x _>0, y_>0
Suppose P(A)=.5, P(B)=.4 and P(A and B)=.2 a. Find P(A or B). b. Find P (A...
Suppose P(A)=.5, P(B)=.4 and P(A and B)=.2 a. Find P(A or B). b. Find P (A and Bc) B complement c. Find P(A or Bc). d. Find P(Ac or Bc)
Using the standard normal distribution, find each probability. a) P(0 < z < 2.23) b) P...
Using the standard normal distribution, find each probability. a) P(0 < z < 2.23) b) P (-1.75 < z < 0) c) P (-1.48 < z < 1.68) d) P (1.22 < z < 1.77) e) P (-2.31 < z < 0.32)
(a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25 (a)...
(a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25 (a) Find P [Z > 1.26]. (b) Find P [Z > -1.37}. (c) find P[-1.25<Z<0.37). (d) find z such that P[Z>z]=0.05. (e) find z such that P[-z<Z<z]=0.99. (f) find the value of k such that P[k<Z<-0.18]=0.4197
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT