Question

In: Math

Let X represent a binomial random variable with n = 380 and p = 0.78. Find...

Let X represent a binomial random variable with n = 380 and p = 0.78. Find the following probabilities. (Round your final answers to 4 decimal places.) Probability a. P(X ≤ 300) b. P(X > 320) c. P(305 ≤ X ≤ 325) d. P( X = 290)

Solutions

Expert Solution

Using Normal Approximation to Binomial
Mean = n * P = ( 380 * 0.78 ) = 296.4
Variance = n * P * Q = ( 380 * 0.78 * 0.22 ) = 65.208
Standard deviation = √(variance) = √(65.208) = 8.0751

Part a)

P ( X <= 300 )
Using continuity correction
P ( X < n + 0.5 ) = P ( X < 300 + 0.5 ) = P ( X < 300.5 )

X ~ N ( µ = 296.4 , σ = 8.0751 )
P ( X < 300.5 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 300.5 - 296.4 ) / 8.0751
Z = 0.51
P ( ( X - µ ) / σ ) < ( 300.5 - 296.4 ) / 8.0751 )
P ( X < 300.5 ) = P ( Z < 0.51 )
P ( X < 300.5 ) = 0.6950

Part b)

P ( X > 320 )
Using continuity correction
P ( X > n + 0.5 ) = P ( X > 320 + 0.5 ) = P ( X > 320.5 )

X ~ N ( µ = 296.4 , σ = 8.0751 )
P ( X > 320.5 ) = 1 - P ( X < 320.5 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 320.5 - 296.4 ) / 8.0751
Z = 2.98
P ( ( X - µ ) / σ ) > ( 320.5 - 296.4 ) / 8.0751 )
P ( Z > 2.98 )
P ( X > 320.5 ) = 1 - P ( Z < 2.98 )
P ( X > 320.5 ) = 1 - 0.9986
P ( X > 320.5 ) = 0.0014

Part c)

P ( 305 <= X <= 325 )
Using continuity correction
P ( n - 0.5 < X < n + 0.5 ) = P ( 305 - 0.5 < X < 325 + 0.5 ) = P ( 304.5 < X < 325.5 )

X ~ N ( µ = 296.4 , σ = 8.0751 )
P ( 304.5 < X < 325.5 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 304.5 - 296.4 ) / 8.0751
Z = 1
Z = ( 325.5 - 296.4 ) / 8.0751
Z = 3.6
P ( 1 < Z < 3.6 )
P ( 304.5 < X < 325.5 ) = P ( Z < 3.6 ) - P ( Z < 1 )
P ( 304.5 < X < 325.5 ) = 0.9998 - 0.8413
P ( 304.5 < X < 325.5 ) = 0.1585

Part d)

P ( X = 290 )
Using continuity correction
P ( n - 0.5 < X < n + 0.5 ) = P ( 290 - 0.5 < X < 290 + 0.5 ) = P ( 289.5 < X < 290.5 )

X ~ N ( µ = 296.4 , σ = 8.0751 )
P ( 289.5 < X < 290.5 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 289.5 - 296.4 ) / 8.0751
Z = -0.85
Z = ( 290.5 - 296.4 ) / 8.0751
Z = -0.73
P ( -0.85 < Z < -0.73 )
P ( 289.5 < X < 290.5 ) = P ( Z < -0.73 ) - P ( Z < -0.85 )
P ( 289.5 < X < 290.5 ) = 0.2327 - 0.1977
P ( 289.5 < X < 290.5 ) = 0.0350


Related Solutions

Let X represent a binomial random variable with n = 110 and p = 0.19. Find...
Let X represent a binomial random variable with n = 110 and p = 0.19. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.) a. P(X ≤ 20)    b. P(X = 10) c. P(X > 30) d. P(X ≥ 25)
Let X represent a binomial random variable with n = 180 and p = 0.23. Find...
Let X represent a binomial random variable with n = 180 and p = 0.23. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.) a. P(X less than or equal to 45) b. P(X=35) c. P(X>55) d. P (X greater than or equal to 50)
Let X represent a binomial random variable with n = 360 and p = 0.82. Find the following probabilities.
  Let X represent a binomial random variable with n = 360 and p = 0.82. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.       Probability a. P(X ≤ 290)   b. P(X > 300)   c. P(295 ≤ X ≤ 305)   d. P(X = 280) 0.0063  
Let X be a binomial random variable with n = 11 and p = 0.3. Find...
Let X be a binomial random variable with n = 11 and p = 0.3. Find the following values. (Round your answers to three decimal places.) (a)     P(X = 5) (b)     P(X ≥ 5) (c)     P(X > 5) (d)     P(X ≤ 5) (e)     μ = np μ = (f)    σ = npq σ =
1. (Use Computer) Let X represent a binomial random variable with n = 400 and p...
1. (Use Computer) Let X represent a binomial random variable with n = 400 and p = 0.8. Find the following probabilities. (Round your final answers to 4 decimal places.)   Probability   a. P(X ≤ 330)         b. P(X > 340)         c. P(335 ≤ X ≤ 345)         d. P(X = 300)       2. (Use computer) Suppose 38% of recent college graduates plan on pursuing a graduate degree. Twenty three recent college graduates are randomly selected. a. What is the...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a...
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a binomial random variable with parameters (m, p). What is the pdf of the random variable Z=X+Y? (b) Let X and Y be indpenednet random variables. Let Z=X+Y. What is the moment generating function for Z in terms of those for X and Y? Confirm your answer to the previous problem (a) via moment generating functions.
Let X be a binomial random variable with parameters n = 5 and p = 0.6....
Let X be a binomial random variable with parameters n = 5 and p = 0.6. a) What is P(X ≥ 1)? b) What is the mean of X? c) What is the standard deviation of X? (Show work)
Let ? be a binomial random variable with ? = 9 and p = 0.4. Find:...
Let ? be a binomial random variable with ? = 9 and p = 0.4. Find: ?(?>6) ?(?≥2) ?(2≤?<5) ?(2<?≤5) ?(?=0) ?(?=7) ?? ?2
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using...
Let x be a random variable that possesses a binomial distribution with p=0.5 and n=9. Using the binomial formula or tables, calculate the following probabilities. Also calculate the mean and standard deviation of the distribution. Round solutions to four decimal places, if necessary. P(x≥3)= P(x≤8)= P(x=5)= μ= σ=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT