In: Math
'(16) Consider the map T : P2(F) →P2(F) defined by T(p(x)) = xp'(x).
(a) Prove that T is linear.
(b) What is null(T)?
(c) Compute the matrix M(T) with respect to the bases B and B' of P2(F), where
B = {1,1 + x,1 + x + x2}, B' = {2−x,x + x2,x2}.
(d) Use the matrix M(T) to write T(7x2 + 12x−1) as a linear combination of the polynomials in the basis B'.
Given, T:P2(F)P2(F) defined by T(p(x)) = x*p'(x).
1) Let A = ax2+bx+c and B = mx2+nx+l, where a,b,c,m,n,l R.
Then, T(A) = x*(2ax+b) = 2ax2+bx
and, T(B) = x*(2mx+n) = 2mx2+nx
Now, T(A+B) = T[(a+m)x2+(b+n)x+(c+l)] = x*[2(a+m)x+(b+n)]
i.e., T(A+B) = 2(a+m)x2+(b+n)x
i.e., T(A+B) = (2ax2+bx) + (2mx2+nx)
i.e., T(A+B) = T(A) + T(B).........(i)
Again, T(kA) = T[k(ax2+bx+c)] = T(kax2+kbx+kc)
i.e., T(kA) = x*[2kax+kb] = k*(2ax2+bx)
i.e., T(kA) = k*T(A)................(ii)
From (i) and (ii) we get, T is linear.
2) We know that null(T) = {x:T(x) = 0}.
Now, T(1) = x*0 = 0
Therefore, null(T) = 1.
3) Given, B = {1,1+x,1+x+x2} and B' = {2-x,x+x2,x2}.
Now, T(1) = x*0 = 0
T(1+x) = x*1 = x
T(1+x+x2) = x*(1+2x) = x+2x2
Here, T(1) = 0*(2-x) + 0*(x+x2) + 0*x2
T(1+x) = 0*(2-x) + 1*(x+x2) + (-1)*x2
T(1+x+x2) = 0*(2-x) + 1*(x+x2) + 1*x2
4) Here, 7x2+12x-1 = (-13)*1 + 5*(1+x) + 7*(1+x+x2)
Now, T(7x2+12x-1) = (-13)*T(1) + 5*T(1+x) + 7*T(1+x+x2)
i.e., T(7x2+12x-1) = (-13)*[0*(2-x) + 0*(x+x2) + 0*x2] + 5*[0*(2-x) + 1*(x+x2) + (-1)*x2]+7*[0*(2-x) + 1*(x+x2) + 1*x2]
i.e., T(7x2+12x-1) = [-13*0+5*0+7*0]*(2-x) + [-13*0+5*1+7*1]*(x+x2) + [-13*0+5*(-1)+7*1]*x2
i.e., T(7x2+12x-1) = 0*(2-x) + 12*(x+x2) + 2*x2.