In: Advanced Math
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y
(A) Prove f(A1∪A2)=f(A1)∪f(A2).
(B) Prove f(A1∩A2)⊂f(A1)∩f(A2). Give an example in which equality fails.
(C) Prove f−1(B1∪B2)=f−1(B1)∪f−1(B2), where f−1(B)={x∈X: f(x)∈B}.
(D) Prove f−1(B1∩B2)=f−1(B1)∩f−1(B2).
(E) Prove f−1(Y∖B1)=X∖f−1(B1).
(Abstract Algebra)