Question

In: Math

Consider the linear transformation T : P2 ? P2 given by T(p(x)) = p(0) + p(1)...

Consider the linear transformation T : P2 ? P2 given by T(p(x)) = p(0) + p(1) + p 0 (x) + 3x 2p 00(x). Let B be the basis {1, x, x2} for P2.

(a) Find the matrix A for T with respect to the basis B.

(b) Find the eigenvalues of A, and a basis for R 3 consisting of eigenvectors of A.

(c) Find a basis for P2 consisting of eigenvectors for T.

Solutions

Expert Solution


Related Solutions

Find the rank and the nullity of the linear transformation: T : P2 → P1, T(?...
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(? + ?? + ??^2) = (? + ?) + (? − ?)x
'(16) Consider the map T : P2(F) →P2(F) defined by T(p(x)) = xp'(x). (a) Prove that...
'(16) Consider the map T : P2(F) →P2(F) defined by T(p(x)) = xp'(x). (a) Prove that T is linear. (b) What is null(T)? (c) Compute the matrix M(T) with respect to the bases B and B' of P2(F), where B = {1,1 + x,1 + x + x2}, B' = {2−x,x + x2,x2}. (d) Use the matrix M(T) to write T(7x2 + 12x−1) as a linear combination of the polynomials in the basis B'.
Consider the linear transformation T : P1 → R^3 given by T(ax + b) = [a+b...
Consider the linear transformation T : P1 → R^3 given by T(ax + b) = [a+b a−b 2a] a) find the null space of T and a basis for it (b) Is T one-to-one? Explain (c) Determine if w = [−1 4 −6] is in the range of T (d) Find a basis for the range of T and its dimension (e) Is T onto? Explain
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x...
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x +2y +z, 2x +2y +3z +w, x +4y +2w) a) Find the dimension and basis for Im T (the image of T) b) Find the dimension and basis for Ker ( the Kernel of T) c) Does the vector v= (2,3,5) belong to Im T? Justify the answer. d) Does the vector v= (12,-3,-6,0) belong to Ker? Justify the answer.
A linear transformation from R3-R4 with the V set of vectors x, where T(x)=0, is V...
A linear transformation from R3-R4 with the V set of vectors x, where T(x)=0, is V a subspace of R3?
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine the eigenvalues of this linear transformation and their algebraic and geometric multiplicities.
Consider the linear transformation T which transforms vectors x C) in the y-axis. a) Express the...
Consider the linear transformation T which transforms vectors x C) in the y-axis. a) Express the vector X = T(x), the result of the linear transformation T on x in terms of the components x and y of X. by reflection [10 Marks] b) Find a matrix T such that T(x) = TX, using matrix multiplication. Calculate the matrix product T2 represent? Explain geometrically (or logically) why it should be this. c) T T . What linear transformation does this...
2) Consider the Lorentz transformation that maps (x,t) into (x',t'), where t and x are both...
2) Consider the Lorentz transformation that maps (x,t) into (x',t'), where t and x are both in time units (so x is really x/c) and all speeds are in c units also. a) Show that the inverse of the Lorentz transformation at v is the same as the Lorentz transformation at -v. Why is that required? b) Show that x^2 - t^2 = x'^2 - t'^2, i.e., that x^2 - t^2 is invariant under Lorentz transformation
A geometric distribution has a pdf given by P(X=x) = p(1-p)^x, where x = 0, 1,...
A geometric distribution has a pdf given by P(X=x) = p(1-p)^x, where x = 0, 1, 2, ..., and 0 < p < 1. This form of the geometric starts at x = 0, not at x = 1. Given are the following properties: E(X) = (1-p)/p, and Var(X) = (1-p)/p^2 A random sample of size n is drawn; the data are X1, X2, ..., Xn. A. Derive the Fisher information function for the parameter p. B. Find the Cramér-Rao...
find out how set H equals {p(t) element of P2 | p(1) equals 0} can be...
find out how set H equals {p(t) element of P2 | p(1) equals 0} can be a subspace of P2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT