Question

In: Math

Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π...

Consider the parametric equation of a curve:

x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π

Part (a): Find the Cartesian equation of the curve by eliminating the parameter. Also, graph the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. Label any x and y intercepts.

Part(b): Find the point (x,y) on the curve with tangent slope 1 and write the equation of the tangent line.

Solutions

Expert Solution


Related Solutions

3. Consider the parametric curve x = sin 2t, y = − cos 2t for −π/4...
3. Consider the parametric curve x = sin 2t, y = − cos 2t for −π/4 ≤ t ≤ π/4. (a) (2 pts) Find the Cartesian form of the curve. (b) (3 pts) Sketch the curve. Label the starting point and ending point, and draw an arrow on the curve to indicate the direction of travel. (c) (5 pts) Find an equation for the curve’s tangent line at the point √2/2, −√2/2 .
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos...
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos t). Find the length of the arc from t = 0 to t = pi. [ Hint: 1 + cosA = 2 cos2 A/2 ]. and the arc length of a parametric
Consider the curve traced out by the parametric equations: { x = 1 + cos(t) y...
Consider the curve traced out by the parametric equations: { x = 1 + cos(t) y = t + sin(t) for 0 ≤ t ≤ 4π. 1. Show that that dy dx = − 1 + cos(t)/sin(t) = − csc(t) − cot(t). 2. Make a Sign Diagram for dy dx to find the intervals of t over which C is increasing or decreasing. • C is increasing on: • C is decreasing on: 3. Show that d2y/dx2 = − csc2...
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Convert x=cos(3t)+sin(3t) & y=cos(t)-sin(t) into an equation of x-y form (cartesian equation). Thank you
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral...
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral x dx−y dy + z^2 dz
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is...
The plane curve represented by x(t) = t − sin(t), y(t) = 7 − cos(t), is a cycloid. (a) Find the slope of the tangent line to the cycloid for 0 < t < 2π. dy dx (b) Find an equation of the tangent line to the cycloid at t = π 3 (c) Find the length of the cycloid from t = 0 to t = π 2
a. (5 Marks) 1 1 cos(x)cos(y) = -cos(x-y) + -cos(x + y) 1 l sin(x)sin(y) =...
a. 1 1 cos(x)cos(y) = -cos(x-y) + -cos(x + y) 1 l sin(x)sin(y) = -cos(x-y)--cos(x+ y) 1 l sin(x)cos(y) =—sin(x-y) +-sin(x + y) A DSB-FC (double sideband-full carrier) signal s(t) is given by, s(t) = n cos(2rr/cf)+ cos(2«-/mt)cos(2«-fct) What is the numeric value for the AM index of modulation, m, fors(f) ?
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
f(x,y)=sin(2x)sin(y) intervals for x and y: -π/2 ≤ x ≤ π/2 and -π ≤ y ≤...
f(x,y)=sin(2x)sin(y) intervals for x and y: -π/2 ≤ x ≤ π/2 and -π ≤ y ≤ π find extrema and saddle points In the solution, I mainly interested how to findcritical points in case of the system of trigonometric equations (fx=0 and fy=0). ,
Consider the parametric curve given by the equations x = tsin(t) and y = tcos(t) for...
Consider the parametric curve given by the equations x = tsin(t) and y = tcos(t) for 0 ≤ t ≤ 1 Find the slope of a tangent line to this curve when t = 1. Find the arclength of this curve (make sure to do it by integration by parts if you find yourself integrating powers of sec(θ))
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT