Question

In: Advanced Math

Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t...

Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t y(0)=0,y′(0)=0

Y(s)= ?    Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t). Use step(t-c) for the Heaviside function u(t−c) .

y(t)= ?

Solutions

Expert Solution


Related Solutions

Take the Laplace transform of the following initial value and solve for X(s)=L{x(t)}X(s)=L{x(t)}: x′′+16x={sin(πt),0} 0≤t<1 1≤t...
Take the Laplace transform of the following initial value and solve for X(s)=L{x(t)}X(s)=L{x(t)}: x′′+16x={sin(πt),0} 0≤t<1 1≤t x(0)=0 x′(0)=0. a) X(s)=   Now find the inverse transform to find b) x(t)= Use u(t−a) for the Heaviside function shifted a units horizontaly.
Take the Laplace transform the following initial value problem and solve for Y(s)=L{y(t)} y”-6y’-27y={1, 0<=t<1 ;...
Take the Laplace transform the following initial value problem and solve for Y(s)=L{y(t)} y”-6y’-27y={1, 0<=t<1 ; 0, 1<=t y(0)=0, y’(0)=0 Y(s)=? Now find the inverse transform to find y(t)=? Note: 1/[s(s-9)(s+3)]=(-1/27)/s+(1/36)/(s+3)+(1/108)/(s-9)
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0)...
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0) = −7 2. (1− t) y''+ t y' − y = 0, y(0) = 3, y'(0) = −1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below....
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below. y'''+7y''+4y'-12y= -24, y(0) = 11, y'(0)= 5, y''(0) = -43
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below....
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below. y"-6y'+9y=cos 2t- sin 2t , y(0)=6, y'(0)=3
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use...
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use the convolution theorem to write your answer. You may leave your answer expressed in terms of an integral.
Use the Laplace transform to solve the following initial value problem: y′′−3y′−28y=δ(t−7) y(0)=0, y′(0)=0 y(t)=
Use the Laplace transform to solve the following initial value problem: y′′−3y′−28y=δ(t−7) y(0)=0, y′(0)=0 y(t)=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT