Question

In: Statistics and Probability

Solve the following problem by the dual simplex method. Min Z = 2 x1 + 3...

Solve the following problem by the dual simplex method.

Min Z = 2 x1 + 3 x2
subject to
2 x1 + 2 x2 <=  30
x1 + 2 x2 >=10
x1 0, x2 >=0

Solutions

Expert Solution


Related Solutions

Construct the Dual and solve the Dual by the graphical and simplex method. Minimize Z =...
Construct the Dual and solve the Dual by the graphical and simplex method. Minimize Z = 1x1 + 2x2 + 3x3 Subject to: 0x1 + 6x2 + 2x3 >= J 3x1 + 2x3 + 5x3 >= K x1, x2, and x3 >= 0 constant resources: J = 25 K = 24 Please do on paper...
Construct the Dual and solve the Dual by the graphical and simplex method. Minimize Z =...
Construct the Dual and solve the Dual by the graphical and simplex method. Minimize Z = 1x1 + 2x2 + 3x3 Subject to: 0x1 + 6x2 + 2x3 >= J 3x1 + 2x3 + 5x3 >= K x1, x2, and x3 >= 0 constant resources: J = 25 K = 24
Construct the Dual and solve the Dual by the graphical and simplex method. Minimize Z =...
Construct the Dual and solve the Dual by the graphical and simplex method. Minimize Z = 1x1 + 1x2 + 2x3 Subject to: 2x1 + 2x2 + 1x3 >= J 5x1 + 6x2 + 7x3 >= K x1, x2, and x3 >= 0 constant resources: J = 15 K = 17 Please do on paper..
Solve the following linear programming problem using both geometric method and simplex: MIN  12X1 + 16X2 S.T.     X1...
Solve the following linear programming problem using both geometric method and simplex: MIN  12X1 + 16X2 S.T.     X1 +   2X2          >= 40                        X1 +    X2>= 30                                     X1, X2>= 0,
Solve the following linear programming problem using the dual simplex method: max ? = −?1 −...
Solve the following linear programming problem using the dual simplex method: max ? = −?1 − 2?2 s.t. −2?1 + 7?2 ≤ 6 −3?1 + ?2 ≤ −1 9?1 − 4?2 ≤ 6 ?1 − ?2 ≤ 1 7?1 − 3?2 ≤ 6 −5?1 + 2?2 ≤ −3 ?1,?2 ≥ 0
Situation: Construct the Dual and solve the Dual by the graphical and simplex method. The values...
Situation: Construct the Dual and solve the Dual by the graphical and simplex method. The values of the variables are in the table. Minimize     Z = Ax1 + Bx2 + Cx3 Subject to:     Dx1 + Ex2 + Fx3 >= J                         Gx1 + Hx3 + Ix3 >= K x1, x2, and x3 >= 0 Student Coefficients Numbers A B C D E F G H I J K Objective Function Equations Constant recursor 1 2 1 1 3 5 2...
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1=...
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1= ___ and x2=___ a.) Maximize : z= 24x1+2x2 Subject to: 6x1+3x2<=10, x1+4x2<=3 With: x1>=0, x2>=0 b.) Maximize: z=2x1+7x2 Subject to: 5x1+x2<=70, 7x1+2x2<=90, x1+x2<=80 With: x1,x2>=0 c.) Maximize: z=x1+2x2+x3+5x4 Subject to: x1+3x2+x3+x4<=55, 4x+x2+3x3+x4<=109 With: x1>=0, x2>- 0, x3>=0, x4>=0 d.) Maximize: z=4x1+7x2 Subject to: x1-4x2<=35 , 4x1-3x2<=21 With: x1>=0, x2>=0
use the two-phase method and big.M method to solve the LPP: min z=x1-2x2 st: x1+x2>=2 -x1+x2>=1...
use the two-phase method and big.M method to solve the LPP: min z=x1-2x2 st: x1+x2>=2 -x1+x2>=1 x2<=3 x1,x2>=0 (two method!)
Solve this problem with the revised simplex method: Maximize            Z = 5X1 + 3X2 + 2X3...
Solve this problem with the revised simplex method: Maximize            Z = 5X1 + 3X2 + 2X3 Subject to            4X1 + 5X2 + 2X3 + X4 ≤ 20                             3X1 + 4X2 - X3 + X4 ≤ 30                            X1, X2, X3, X4 ≥ 0
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1 + x2 ≤ 3 x2 + x3 ≤ 4 x1 + x3 ≤ 5 x1, x2, x3 ≥0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT