Question

In: Statistics and Probability

Solve the following linear programming problem using the dual simplex method: max ? = −?1 −...

Solve the following linear programming problem using the dual simplex method:

max ? = −?1 − 2?2

s.t.

−2?1 + 7?2 ≤ 6

−3?1 + ?2 ≤ −1

9?1 − 4?2 ≤ 6

?1 − ?2 ≤ 1

7?1 − 3?2 ≤ 6

−5?1 + 2?2 ≤ −3

?1,?2 ≥ 0

Solutions

Expert Solution


Related Solutions

Maximization by the simplex method Solve the following linear programming problems using the simplex method. 1>....
Maximization by the simplex method Solve the following linear programming problems using the simplex method. 1>. Maximize z = x1 + 2x2 + 3x3 subject to x1 + x2 + x3 ≤ 12 2x1 + x2 + 3x3 ≤ 18 x1, x2, x3 ≥ 0 2>. A farmer has 100 acres of land on which she plans to grow wheat and corn. Each acre of wheat requires 4 hours of labor and $20 of capital, and each acre of corn...
Use the dual simplex method to solve the following linear programming problems. Clearly indicate all the...
Use the dual simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. Use the simplex method to solve the following linear programming problems. Clearly indicate all the steps, the entering and departing rows and columns and rows, the pivot and the row operations used. 2.2.1 An electronics manufacturing company has three production plants, each of which produces three different...
Simplex Method Consider the following linear programming problem: max z = 6x1 + 3x2 - 9x2...
Simplex Method Consider the following linear programming problem: max z = 6x1 + 3x2 - 9x2 - 9x3 + 15x4 s.t. 2x1 + 4x2 +6x3 + 8x4 <= 80    6x1 - 3x2 +3x3 + 6x4 <= 24    12x1 - 6x2 + 3x3 - 3x4 <= 30    x1, x2, x3, x4 >= 0 Rewrite the problem in standard form, that is, add the necessary slack variables in order to consider only equality constraints (and non-negativity). What is the...
Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate...
Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate whether the feasible region is empty or the objective function is unbounded. (Enter EMPTY if the feasible region is empty and UNBOUNDED if the objective function is unbounded.) Minimize c = x + y + z + w subject to x + y ≥ 80 x + z ≥ 60 x + y − w ≤ 50 y + z − w ≤ 50...
1) Use the simplex method to solve the linear programming problem. Maximize P = 6x +...
1) Use the simplex method to solve the linear programming problem. Maximize P = 6x + 5y subject to 3x + 4y ≤ 34 x + y ≤ 10 3x + y ≤ 28 x ≥ 0, y ≥ 0   The maximum is P = at (x, y) = 2) Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 21 3x + 2y...
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1=...
Use the simplex method to solve the linear programming problem. The maximum is ___ when x1= ___ and x2=___ a.) Maximize : z= 24x1+2x2 Subject to: 6x1+3x2<=10, x1+4x2<=3 With: x1>=0, x2>=0 b.) Maximize: z=2x1+7x2 Subject to: 5x1+x2<=70, 7x1+2x2<=90, x1+x2<=80 With: x1,x2>=0 c.) Maximize: z=x1+2x2+x3+5x4 Subject to: x1+3x2+x3+x4<=55, 4x+x2+3x3+x4<=109 With: x1>=0, x2>- 0, x3>=0, x4>=0 d.) Maximize: z=4x1+7x2 Subject to: x1-4x2<=35 , 4x1-3x2<=21 With: x1>=0, x2>=0
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 21 3x + 2y + 4z ≤ 36 2x + 5y − 2z ≤ 15 x ≥ 0, y ≥ 0, z ≥ 0
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y subject to 3x + 4y ≤ 33 x + y ≤ 9 2x + y ≤ 13 x ≥ 0, y ≥ 0   The maximum is P =  at (x, y)
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = 3x + 2y subject to 3x + 4y ≤ 33 x + y ≤ 9 2x + y ≤ 13 x ≥ 0, y ≥ 0   The maximum is P =  at (x, y)
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y...
Use the simplex method to solve the linear programming problem. Maximize P = x + 2y + 3z subject to 2x + y + z ≤ 56 3x + 2y + 4z ≤ 96 2x + 5y − 2z ≤ 40 x ≥ 0, y ≥ 0, z ≥ 0   The maximum is P =  at (x, y, z) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT