Question

In: Advanced Math

Consider the system of linear equations: 3? − 5? + 2? = 2 2? − ?...

Consider the system of linear equations:

3? − 5? + 2? = 2

2? − ? + 3? = 3

? + 4? + 7? = 4

(a) Write the augmented matrix for the above system.

(b) Find the inverse of the coefficient matrix.

(c) Find the determinant of the coefficient matrix.

(d) Find the LU-factorization of the coefficient matrix.

(e) Solve the above system using Gauss-Jordan elimination.

(f) Use the inverse of the coefficient matrix from part (b) to solve the above system

. (g) Solve the above system using the lower and upper triangular matrices found in part (d).

(h) Solve the above system using Cramer’s rule.

Solutions

Expert Solution


Related Solutions

Suppose a system of linear equations has 2 equations and 3 variables. (a) True or False:...
Suppose a system of linear equations has 2 equations and 3 variables. (a) True or False: The system could have no solutions. (b) Produce an example of a system with 2 equations and 3 variables that has no solution, or explain why such a system is impossible.
Consider a general system of linear equations with m equations in n variables, called system I....
Consider a general system of linear equations with m equations in n variables, called system I. Let system II be the system obtained from system I by multiplying equation i by a nonzero real number c. Prove that system I and system II are equivalent.
Consider a system of linear equations: x−y + 3z + u = 3 2x−2y + 7z...
Consider a system of linear equations: x−y + 3z + u = 3 2x−2y + 7z + u = 2 x−y + 2z + u = 1 1. Write down the augmented matrix of the system, and take this matrix to the reduced row echelon form. 2. Determine the leading and the free variables of the system, and write down its general solution.
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that...
Consider a homogeneous system of linear equations with m equations and n variables. (i) Prove that this system is consistent. (ii) Prove that if m < n then the system has infinitely many solutions. Hint: Use r (the number of pivot columns) of the augmented matrix.
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2...
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2 + 7x3 = −34 −8x1 + x2 − 2x3 = −20 With an initial guess x (0) = [0, 0, 0]T solve the system using Gauss-Seidel method.
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
(3) (1.1: Geometry) For each part below, give an example of a linear system of equations...
(3) (1.1: Geometry) For each part below, give an example of a linear system of equations in two variables that has the given property. In each case, draw the lines corresponding to the solutions of the equations in the system. (a) has no solution (b) has exactly one solution (c) has infinitely many solutions (i) Add or remove equations in (b) to make an inconsistent system. (ii) Add or remove equations in (b) to create infinitely many solutions. (iii) Add...
Hello. Linear Algebra class. In a linear system of equations, the solution is one of the...
Hello. Linear Algebra class. In a linear system of equations, the solution is one of the possibilities. 1)there is one unique solution(only one) which means the line of the equation interest only one time at a point. 2)there are many solutions (infinity) if the lines of equations lie on one another. 3)there is no solution if the line of the equation are parallel. how to test for each possibility WITHOUT graphing the system of equations using the coefficients in each...
T41(Robert Beezer) Consider the system of linear equations LS(A,b), and suppose that every element of the...
T41(Robert Beezer) Consider the system of linear equations LS(A,b), and suppose that every element of the vector of constants b is a common multiple of the corresponding element of a certain column of A.More precisely, there is a complex numberα, and a column index j, such that [b]i=α[A]ij for all i. Prove that the system is consistent.
2. (Solving linear systems) Consider the linear system Ax = b with A =[14 9 14...
2. (Solving linear systems) Consider the linear system Ax = b with A =[14 9 14 6 -10;-11 -11 5 8 6;15 -2 -14 8 -15;14 13 11 -3 -7;0 9 13 5 -14], and . b = [-4;8;6;0;10]. a) Verify that the linear system has a unique solution. Hint: use rref, rank, det, or any other Matlab method. Briefly explain the answer please. You'll now solve Ax = b in three different ways. Store the three different solutions in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT